{"title":"整数程序的最优长度切割平面驳斥","authors":"K. Subramani, Piotr Wojciechowski","doi":"10.1016/j.disopt.2023.100806","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is </span><strong>NPO PB-complete</strong>. Additionally, we show that the problem of finding the shortest tree-like refutation is <strong>NPO-hard</strong> for IPs. We also show that the problem of finding the shortest dag-like refutation is <strong>NPO-hard</strong> for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in <strong>FPSPACE</strong>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100806"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal length cutting plane refutations of integer programs\",\"authors\":\"K. Subramani, Piotr Wojciechowski\",\"doi\":\"10.1016/j.disopt.2023.100806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is </span><strong>NPO PB-complete</strong>. Additionally, we show that the problem of finding the shortest tree-like refutation is <strong>NPO-hard</strong> for IPs. We also show that the problem of finding the shortest dag-like refutation is <strong>NPO-hard</strong> for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in <strong>FPSPACE</strong>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100806\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000488\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal length cutting plane refutations of integer programs
In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is NPO PB-complete. Additionally, we show that the problem of finding the shortest tree-like refutation is NPO-hard for IPs. We also show that the problem of finding the shortest dag-like refutation is NPO-hard for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in FPSPACE.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.