{"title":"Halin图中最短路径的最大数目","authors":"Shunhai He , Huiqing Liu","doi":"10.1016/j.disopt.2023.100809","DOIUrl":null,"url":null,"abstract":"<div><p>A Halin graph <span><math><mi>G</mi></math></span> is a plane graph consisting of a plane embedding of a tree <span><math><mi>T</mi></math></span> of order at least 4 containing no vertex of degree 2, and of a cycle <span><math><mi>C</mi></math></span> connecting all leaves of <span><math><mi>T</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the maximum number of copies of <span><math><mi>G</mi></math></span> in a Halin graph on <span><math><mi>n</mi></math></span> vertices. In this paper, we give exact values of <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a path on <span><math><mi>k</mi></math></span> vertices for <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn></mrow></math></span>. Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100809"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of short paths in a Halin graph\",\"authors\":\"Shunhai He , Huiqing Liu\",\"doi\":\"10.1016/j.disopt.2023.100809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Halin graph <span><math><mi>G</mi></math></span> is a plane graph consisting of a plane embedding of a tree <span><math><mi>T</mi></math></span> of order at least 4 containing no vertex of degree 2, and of a cycle <span><math><mi>C</mi></math></span> connecting all leaves of <span><math><mi>T</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the maximum number of copies of <span><math><mi>G</mi></math></span> in a Halin graph on <span><math><mi>n</mi></math></span> vertices. In this paper, we give exact values of <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a path on <span><math><mi>k</mi></math></span> vertices for <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn></mrow></math></span>. Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100809\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000518\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000518","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The maximum number of short paths in a Halin graph
A Halin graph is a plane graph consisting of a plane embedding of a tree of order at least 4 containing no vertex of degree 2, and of a cycle connecting all leaves of . Let be the maximum number of copies of in a Halin graph on vertices. In this paper, we give exact values of when is a path on vertices for . Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.