Discrete Optimization最新文献

筛选
英文 中文
Principled deep neural network training through linear programming 原理深度神经网络训练通过线性规划
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-08-01 DOI: 10.1016/j.disopt.2023.100795
Daniel Bienstock , Gonzalo Muñoz , Sebastian Pokutta
{"title":"Principled deep neural network training through linear programming","authors":"Daniel Bienstock ,&nbsp;Gonzalo Muñoz ,&nbsp;Sebastian Pokutta","doi":"10.1016/j.disopt.2023.100795","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100795","url":null,"abstract":"<div><p><span>Deep learning<span> has received much attention lately due to the impressive empirical performance achieved by training algorithms. Consequently, a need for a better theoretical understanding of these problems has become more evident and multiple works in recent years have focused on this task. In this work, using a unified framework, we show that there exists a polyhedron that simultaneously encodes, in its facial structure, all possible </span></span>deep neural network<span> training problems that can arise from a given architecture, activation functions, loss function, and sample size. Notably, the size of the polyhedral representation depends only linearly on the sample size, and a better dependency on several other network parameters is unlikely. Using this general result, we compute the size of the polyhedral encoding for commonly used neural network architectures. Our results provide a new perspective on training problems through the lens of polyhedral theory and reveal strong structure arising from these problems.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
On the Rényi–Ulam game with restricted size queries 关于限制大小查询的r<s:1> -乌拉姆游戏
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100772
Ádám X. Fraknói , Dávid Á. Márton , Dániel G. Simon , Dániel A. Lenger
{"title":"On the Rényi–Ulam game with restricted size queries","authors":"Ádám X. Fraknói ,&nbsp;Dávid Á. Márton ,&nbsp;Dániel G. Simon ,&nbsp;Dániel A. Lenger","doi":"10.1016/j.disopt.2023.100772","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100772","url":null,"abstract":"<div><p>We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most <span><math><mi>k</mi></math></span> elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most <span><math><mi>ℓ</mi></math></span> times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and an upper bound which differs from the lower one by at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We also give its exact value when <span><math><mi>n</mi></math></span> is sufficiently large compared to <span><math><mi>k</mi></math></span>. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polytope of binary sequences with bounded variation 具有有界变差的二进制序列的多面体
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100776
Christoph Buchheim, Maja Hügging
{"title":"The polytope of binary sequences with bounded variation","authors":"Christoph Buchheim,&nbsp;Maja Hügging","doi":"10.1016/j.disopt.2023.100776","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100776","url":null,"abstract":"<div><p><span>We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length </span><span><math><mi>n</mi></math></span><span> with bounded variation<span>, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems<span> subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of </span></span></span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.</p><p>A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum gradation in greyscales of graphs 灰度图的最小渐变
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100773
Natalia de Castro , María A. Garrido-Vizuete , Rafael Robles , María Trinidad Villar-Liñán
{"title":"Minimum gradation in greyscales of graphs","authors":"Natalia de Castro ,&nbsp;María A. Garrido-Vizuete ,&nbsp;Rafael Robles ,&nbsp;María Trinidad Villar-Liñán","doi":"10.1016/j.disopt.2023.100773","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100773","url":null,"abstract":"<div><p>In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the Mostar index for bipartite graphs and split graphs 二部图和分裂图的Mostar指数最大化
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100768
Štefko Miklavič , Johannes Pardey , Dieter Rautenbach , Florian Werner
{"title":"Maximizing the Mostar index for bipartite graphs and split graphs","authors":"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner","doi":"10.1016/j.disopt.2023.100768","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100768","url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Maximizing the Mostar index for bipartite graphs and split graphs 二部图和分裂图的Mostar指数最大化
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100768
Štefko Miklavič , Johannes Pardey , Dieter Rautenbach , Florian Werner
{"title":"Maximizing the Mostar index for bipartite graphs and split graphs","authors":"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner","doi":"10.1016/j.disopt.2023.100768","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100768","url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the Rényi–Ulam game with restricted size queries 关于具有限制大小查询的Rényi–Ulam对策
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100772
Ádám X. Fraknói , Dávid Á. Márton , Dániel G. Simon , Dániel A. Lenger
{"title":"On the Rényi–Ulam game with restricted size queries","authors":"Ádám X. Fraknói ,&nbsp;Dávid Á. Márton ,&nbsp;Dániel G. Simon ,&nbsp;Dániel A. Lenger","doi":"10.1016/j.disopt.2023.100772","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100772","url":null,"abstract":"<div><p>We investigate the following version of the well-known Rényi–Ulam game. Two players – the Questioner and the Responder – play against each other. The Responder thinks of a number from the set <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, and the Questioner has to find this number. To do this, he can ask whether a chosen set of at most <span><math><mi>k</mi></math></span> elements contains the thought number. The Responder answers with YES or NO immediately, but during the game, he may lie at most <span><math><mi>ℓ</mi></math></span> times. The minimum number of queries needed for the Questioner to surely find the unknown element is denoted by <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. First, we develop a highly effective tool that we call Convexity Lemma. By using this lemma, we give a general lower bound of <span><math><mrow><mi>R</mi><msubsup><mrow><mi>U</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>k</mi></mrow></msubsup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and an upper bound which differs from the lower one by at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We also give its exact value when <span><math><mi>n</mi></math></span> is sufficiently large compared to <span><math><mi>k</mi></math></span>. With these, we managed to improve and generalize the results obtained by Meng, Lin, and Yang in a 2013 paper about the case <span><math><mrow><mi>ℓ</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49809018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EPTAS for load balancing problem on parallel machines with a non-renewable resource 具有不可再生资源的并行机器负载平衡问题的EPTAS
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100775
G. Jaykrishnan, Asaf Levin
{"title":"EPTAS for load balancing problem on parallel machines with a non-renewable resource","authors":"G. Jaykrishnan,&nbsp;Asaf Levin","doi":"10.1016/j.disopt.2023.100775","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100775","url":null,"abstract":"<div><p>The problem considered is the non-preemptive scheduling of independent jobs that consume a resource (which is non-renewable and replenished regularly) on parallel uniformly related machines. The input defines the speed of machines, size of jobs, the quantity of the resource required by the jobs, the replenished quantities, and replenishment dates of the resource. Every job can start processing only after the required quantity of the resource is allocated to the job. The objective function is a generalization of makespan minimization and minimization of the <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span>-norm of the vector of loads of the machines. We present an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable resource settings only for the special case of our problem of makespan minimization on identical machines.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secretary and online matching problems with machine learned advice 秘书和在线匹配问题与机器学习建议
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100778
Antonios Antoniadis , Themis Gouleakis , Pieter Kleer , Pavel Kolev
{"title":"Secretary and online matching problems with machine learned advice","authors":"Antonios Antoniadis ,&nbsp;Themis Gouleakis ,&nbsp;Pieter Kleer ,&nbsp;Pavel Kolev","doi":"10.1016/j.disopt.2023.100778","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100778","url":null,"abstract":"<div><p>The classic analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. In contrast, machine learning approaches shine in exploiting patterns in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take these predictions into account. In particular, we study the following online selection problems: (i) the classic secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classic online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49713319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 89
The complexity of 2-vertex-connected orientation in mixed graphs 混合图中2点连通方向的复杂度
IF 1.1 4区 数学
Discrete Optimization Pub Date : 2023-05-01 DOI: 10.1016/j.disopt.2023.100774
Florian Hörsch , Zoltán Szigeti
{"title":"The complexity of 2-vertex-connected orientation in mixed graphs","authors":"Florian Hörsch ,&nbsp;Zoltán Szigeti","doi":"10.1016/j.disopt.2023.100774","DOIUrl":"https://doi.org/10.1016/j.disopt.2023.100774","url":null,"abstract":"<div><p>We consider two possible extensions of a theorem of Thomassen characterizing the graphs admitting a 2-vertex-connected orientation. First, we show that the problem of deciding whether a mixed graph has a 2-vertex-connected orientation is NP-hard. This answers a question of Bang-Jensen, Huang and Zhu. For the second part, we call a directed graph <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>\u0000<span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected for some <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> if <span><math><mi>D</mi></math></span> is 2-arc-connected and <span><math><mrow><mi>D</mi><mo>−</mo><mi>v</mi></mrow></math></span> is strongly connected for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>T</mi></mrow></math></span>. We deduce a characterization of the graphs admitting a <span><math><mrow><mn>2</mn><mi>T</mi></mrow></math></span>-connected orientation from the theorem of Thomassen.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信