参数矩阵拦截

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Nils Hausbrandt , Oliver Bachtler , Stefan Ruzika , Luca E. Schäfer
{"title":"参数矩阵拦截","authors":"Nils Hausbrandt ,&nbsp;Oliver Bachtler ,&nbsp;Stefan Ruzika ,&nbsp;Luca E. Schäfer","doi":"10.1016/j.disopt.2024.100823","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the parametric<span> matroid one-interdiction problem. Given a matroid, each element of its ground set is associated with a weight that depends linearly on a real parameter from a given parameter interval. The goal is to find, for each parameter value, one element that, when being removed, maximizes the weight of a minimum weight basis. The complexity of this problem can be measured by the number of slope changes of the piecewise linear function mapping the parameter to the weight of the optimal solution of the parametric matroid one-interdiction problem. We provide two polynomial upper bounds as well as a lower bound on the number of these slope changes. Using these, we develop algorithms that require a polynomial number of independence tests and analyse their running time in the special case of graphical matroids.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"51 ","pages":"Article 100823"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric matroid interdiction\",\"authors\":\"Nils Hausbrandt ,&nbsp;Oliver Bachtler ,&nbsp;Stefan Ruzika ,&nbsp;Luca E. Schäfer\",\"doi\":\"10.1016/j.disopt.2024.100823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the parametric<span> matroid one-interdiction problem. Given a matroid, each element of its ground set is associated with a weight that depends linearly on a real parameter from a given parameter interval. The goal is to find, for each parameter value, one element that, when being removed, maximizes the weight of a minimum weight basis. The complexity of this problem can be measured by the number of slope changes of the piecewise linear function mapping the parameter to the weight of the optimal solution of the parametric matroid one-interdiction problem. We provide two polynomial upper bounds as well as a lower bound on the number of these slope changes. Using these, we develop algorithms that require a polynomial number of independence tests and analyse their running time in the special case of graphical matroids.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"51 \",\"pages\":\"Article 100823\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍参数矩阵单预测问题。给定一个矩阵,其地面集的每个元素都与一个权重相关联,而这个权重与给定参数区间中的一个实数参数线性相关。我们的目标是为每个参数值找到一个元素,当该元素被移除时,最小权基的权重最大。这个问题的复杂性可以用参数与参数矩阵单预测问题最优解权重之间的分片线性函数的斜率变化次数来衡量。我们为这些斜率变化的次数提供了两个多项式上限和一个下限。利用这些方法,我们开发出了只需要多项式数量的独立性检验的算法,并分析了它们在图形 matroids 特殊情况下的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric matroid interdiction

We introduce the parametric matroid one-interdiction problem. Given a matroid, each element of its ground set is associated with a weight that depends linearly on a real parameter from a given parameter interval. The goal is to find, for each parameter value, one element that, when being removed, maximizes the weight of a minimum weight basis. The complexity of this problem can be measured by the number of slope changes of the piecewise linear function mapping the parameter to the weight of the optimal solution of the parametric matroid one-interdiction problem. We provide two polynomial upper bounds as well as a lower bound on the number of these slope changes. Using these, we develop algorithms that require a polynomial number of independence tests and analyse their running time in the special case of graphical matroids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信