The maximum number of short paths in a Halin graph

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Shunhai He , Huiqing Liu
{"title":"The maximum number of short paths in a Halin graph","authors":"Shunhai He ,&nbsp;Huiqing Liu","doi":"10.1016/j.disopt.2023.100809","DOIUrl":null,"url":null,"abstract":"<div><p>A Halin graph <span><math><mi>G</mi></math></span> is a plane graph consisting of a plane embedding of a tree <span><math><mi>T</mi></math></span> of order at least 4 containing no vertex of degree 2, and of a cycle <span><math><mi>C</mi></math></span> connecting all leaves of <span><math><mi>T</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the maximum number of copies of <span><math><mi>G</mi></math></span> in a Halin graph on <span><math><mi>n</mi></math></span> vertices. In this paper, we give exact values of <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mi>G</mi></math></span> is a path on <span><math><mi>k</mi></math></span> vertices for <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn></mrow></math></span>. Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100809"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000518","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A Halin graph G is a plane graph consisting of a plane embedding of a tree T of order at least 4 containing no vertex of degree 2, and of a cycle C connecting all leaves of T. Let fh(n,G) be the maximum number of copies of G in a Halin graph on n vertices. In this paper, we give exact values of fh(n,G) when G is a path on k vertices for 2k5. Moreover, we develop a new graph transformation preserving the number of vertices, so that the resulting graph has a monotone behavior with respect to the number of short paths.

Halin图中最短路径的最大数目
Halin图G是一个平面图,由至少为4阶的树T的平面嵌入和连接T的所有叶的循环C的平面嵌入组成。设fh(n,G)为Halin图中n个顶点上G的最大副本数。本文给出了当G是k个顶点上的路径且2≤k≤5时,fh(n,G)的精确值。此外,我们提出了一种保留顶点数的图变换,使得生成的图对短路径数具有单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信