关于帕累托最优均衡交换

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Pavlos Eirinakis , Ioannis Mourtos , Michalis Samaris
{"title":"关于帕累托最优均衡交换","authors":"Pavlos Eirinakis ,&nbsp;Ioannis Mourtos ,&nbsp;Michalis Samaris","doi":"10.1016/j.disopt.2024.100835","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a market without money in which every agent offers indivisible goods in multiple copies, in exchange for goods of other agents. The exchange must be balanced in the sense that each agent should receive a quantity of good(s) equal to the one she transfers to others. We describe the market in graph-theoretic terms hence we use the notion of circulations to describe a balanced exchange of goods. Each agent has strict preferences over the agents from which she will receive goods and an upper bound on the quantity of each transaction, while a positive integer weight reflects the social importance of each unit exchanged. In this paper, we propose a simple variant of the Top Trading Cycles mechanism that finds a Pareto optimal circulation. We then offer necessary and sufficient conditions for a circulation to be Pareto optimal and, as a consequence, a easy recognition procedure. Last, we show that finding a maximum weight Pareto optimal circulation is NP-hard but becomes polynomial if weights are concordant with preferences.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"52 ","pages":"Article 100835"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Pareto optimal balanced exchanges\",\"authors\":\"Pavlos Eirinakis ,&nbsp;Ioannis Mourtos ,&nbsp;Michalis Samaris\",\"doi\":\"10.1016/j.disopt.2024.100835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate a market without money in which every agent offers indivisible goods in multiple copies, in exchange for goods of other agents. The exchange must be balanced in the sense that each agent should receive a quantity of good(s) equal to the one she transfers to others. We describe the market in graph-theoretic terms hence we use the notion of circulations to describe a balanced exchange of goods. Each agent has strict preferences over the agents from which she will receive goods and an upper bound on the quantity of each transaction, while a positive integer weight reflects the social importance of each unit exchanged. In this paper, we propose a simple variant of the Top Trading Cycles mechanism that finds a Pareto optimal circulation. We then offer necessary and sufficient conditions for a circulation to be Pareto optimal and, as a consequence, a easy recognition procedure. Last, we show that finding a maximum weight Pareto optimal circulation is NP-hard but becomes polynomial if weights are concordant with preferences.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"52 \",\"pages\":\"Article 100835\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528624000148\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000148","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个没有货币的市场,在这个市场中,每个代理人都提供多份不可分割的商品,以交换其他代理人的商品。交换必须是平衡的,即每个代理人获得的商品数量应与她转让给他人的商品数量相等。我们用图论的术语来描述市场,因此我们用流通的概念来描述均衡的商品交换。每个代理人都对自己将从哪些代理人那里获得商品有严格的偏好,并对每次交易的数量有一个上限,而正整数权重则反映了每个交换单位的社会重要性。在本文中,我们提出了顶级交易循环机制的一个简单变体,它能找到帕累托最优循环。然后,我们提出了帕累托最优循环的必要条件和充分条件,并由此提出了一个简单的识别程序。最后,我们证明,寻找最大权重的帕累托最优循环是 NP 难的,但如果权重与偏好一致,则会变成多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Pareto optimal balanced exchanges

We investigate a market without money in which every agent offers indivisible goods in multiple copies, in exchange for goods of other agents. The exchange must be balanced in the sense that each agent should receive a quantity of good(s) equal to the one she transfers to others. We describe the market in graph-theoretic terms hence we use the notion of circulations to describe a balanced exchange of goods. Each agent has strict preferences over the agents from which she will receive goods and an upper bound on the quantity of each transaction, while a positive integer weight reflects the social importance of each unit exchanged. In this paper, we propose a simple variant of the Top Trading Cycles mechanism that finds a Pareto optimal circulation. We then offer necessary and sufficient conditions for a circulation to be Pareto optimal and, as a consequence, a easy recognition procedure. Last, we show that finding a maximum weight Pareto optimal circulation is NP-hard but becomes polynomial if weights are concordant with preferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信