论切多面体和图的次形

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Konstantinos Kaparis , Adam N. Letchford , Ioannis Mourtos
{"title":"论切多面体和图的次形","authors":"Konstantinos Kaparis ,&nbsp;Adam N. Letchford ,&nbsp;Ioannis Mourtos","doi":"10.1016/j.disopt.2023.100807","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>max-cut problem</em> is a fundamental and much-studied <span><math><mi>NP</mi></math></span><span>-hard combinatorial optimisation problem<span>, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain </span></span><em>minors</em><span>. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100807"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On cut polytopes and graph minors\",\"authors\":\"Konstantinos Kaparis ,&nbsp;Adam N. Letchford ,&nbsp;Ioannis Mourtos\",\"doi\":\"10.1016/j.disopt.2023.100807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>max-cut problem</em> is a fundamental and much-studied <span><math><mi>NP</mi></math></span><span>-hard combinatorial optimisation problem<span>, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain </span></span><em>minors</em><span>. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100807\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157252862300049X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862300049X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最大割问题是一个基本的、研究较多的NP难组合优化问题,具有广泛的应用。几位作者已经证明,如果底层图没有某些子图,则最大割问题可以在多项式时间内求解。我们给出了这些结果的多面体对应。特别地,我们证明了,如果割多面体的一个有效不等式族满足某些条件,则存在一个相关的小闭图族,在该图族上可以有效地求解最大割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On cut polytopes and graph minors

The max-cut problem is a fundamental and much-studied NP-hard combinatorial optimisation problem, with a wide range of applications. Several authors have shown that the max-cut problem can be solved in polynomial time if the underlying graph is free of certain minors. We give a polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of graphs on which the max-cut problem can be solved efficiently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信