Optimal length cutting plane refutations of integer programs

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
K. Subramani, Piotr Wojciechowski
{"title":"Optimal length cutting plane refutations of integer programs","authors":"K. Subramani,&nbsp;Piotr Wojciechowski","doi":"10.1016/j.disopt.2023.100806","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is </span><strong>NPO PB-complete</strong>. Additionally, we show that the problem of finding the shortest tree-like refutation is <strong>NPO-hard</strong> for IPs. We also show that the problem of finding the shortest dag-like refutation is <strong>NPO-hard</strong> for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in <strong>FPSPACE</strong>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100806"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the computational complexities of determining optimal length refutations of infeasible integer programs (IPs). We focus on three different types of refutations, namely read-once refutations, tree-like refutations, and dag-like refutations. For each refutation type, we are interested in finding the length of the shortest possible refutation of that type. In the case of this paper, the length of a refutation is equal to the number of inferences in that refutation. The refutations in this paper are also defined by the types of inferences that can be used to derive new constraints. We are interested in refutations with two inference rules. The first rule corresponds to the summation of two constraints and is called the ADD rule. The second rule is the DIV rule which divides a constraint by a positive integer. For integer programs, we study the complexity of approximating the length of the shortest refutation of each type (read-once, tree-like, and dag-like). In this paper, we show that the problem of finding the shortest read-once refutation is NPO PB-complete. Additionally, we show that the problem of finding the shortest tree-like refutation is NPO-hard for IPs. We also show that the problem of finding the shortest dag-like refutation is NPO-hard for IPs. Finally, we show that the problems of finding the shortest tree-like and dag-like refutations are in FPSPACE.

整数程序的最优长度切割平面驳斥
本文讨论了确定不可行整数规划最优长度反驳的计算复杂性。我们重点讨论了三种不同类型的反驳,即一次阅读式反驳、树状反驳和达格式反驳。对于每个反驳类型,我们感兴趣的是找到该类型的最短可能反驳的长度。在本文的情况下,反驳的长度等于该反驳中推理的次数。本文中的反驳也由可用于推导新约束的推理类型来定义。我们对具有两个推理规则的反驳感兴趣。第一个规则对应于两个约束的总和,称为ADD规则。第二个规则是DIV规则,它将约束除以一个正整数。对于整数规划,我们研究了近似每种类型(读一次、类树和类dag)的最短反驳的长度的复杂性。在本文中,我们证明了一次反驳的最短阅读问题是NPO-PB完全的。此外,我们还证明了寻找最短树状反驳的问题对于IP来说是NPO困难的。我们还表明,对于IP来说,寻找最短类dag反驳的问题是NPO困难的。最后,我们证明了在FPSPACE中寻找最短类树和类dag反驳的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信