On the general Z-type index of connected graphs

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Chaohui Chen , Wenshui Lin
{"title":"On the general Z-type index of connected graphs","authors":"Chaohui Chen ,&nbsp;Wenshui Lin","doi":"10.1016/j.disopt.2023.100808","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span><span> be a connected graph, and </span><span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> the degree of vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. We define the general <span><math><mi>Z</mi></math></span>-type index of <span><math><mi>G</mi></math></span> as <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></mrow></msub><msup><mrow><mrow><mo>[</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><mi>β</mi><mo>]</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span><span> are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.</span></p><p>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span> the set of connected graphs with degree sequence <span><math><mi>π</mi></math></span>. In the present paper, under different conditions of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>, we show that:</p><p><span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span><span> There exists a so-called BFS-graph having extremal </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> If <span><math><mi>π</mi></math></span> is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index in <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></mrow></math></span>;</p><p><span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span><span> The so-called majorization theorem of </span><span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> holds for trees, unicyclic graphs, and bicyclic graphs.</p><p>As applications of the above results, we determine the extremal graphs with maximum <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> index for <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>≤</mo><mn>2</mn></mrow></math></span><span> in the set of trees, unicyclic graphs, and bicyclic graphs with given number of pendent vertices, maximum degree<span>, independence number, matching number, and domination number, respectively. These extend the main results of some published papers.</span></span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100808"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G=(V,E) be a connected graph, and d(u) the degree of vertex uV. We define the general Z-type index of G as Zα,β(G)=uvE[d(u)+d(v)β]α, where α and β are two real numbers. This generalizes several famous topological indices, such as the first and second Zagreb indices, the general sum-connectivity index, the reformulated first Zagreb index, and the general Platt index, which have successful applications in QSPR/QSAR research. Hence, we are able to study these indices in a unified approach.

Let C(π) the set of connected graphs with degree sequence π. In the present paper, under different conditions of α and β, we show that:

(1) There exists a so-called BFS-graph having extremal Zα,β index in C(π);

(2) If π is the degree sequence of a tree, a unicyclic graph, or a bicyclic graph, with minimum degree 1, then there exists a special BFS-graph with extremal Zα,β index in C(π);

(3) The so-called majorization theorem of Zα,β holds for trees, unicyclic graphs, and bicyclic graphs.

As applications of the above results, we determine the extremal graphs with maximum Zα,β index for α>1 and β2 in the set of trees, unicyclic graphs, and bicyclic graphs with given number of pendent vertices, maximum degree, independence number, matching number, and domination number, respectively. These extend the main results of some published papers.

关于连通图的一般z型指标
设G=(V,E)是连通图,d(u)是顶点u∈V的阶。我们将G的一般Z型指数定义为Zα,β(G)=∑uv∈E[d(u)+d(v)-β]α,其中α和β是两个实数。这概括了几个著名的拓扑指数,如第一和第二Zagreb指数、一般和连通性指数、重新制定的第一Zagreb指标和一般Platt指数,它们在QSPR/QSAR研究中有着成功的应用。因此,我们能够以统一的方法研究这些指数。设C(π)为度序列为π的连通图集。本文证明:(1)在C(π)中存在一个具有极值Zα,β指数的BFS图;(2) 如果π是树、单环图或双环图的度序列,最小度为1,则在C(π)中存在一个具有极值Zα,β指数的特殊BFS图;(3) 所谓的Zα,β的多数化定理适用于树、单环图和双环图。作为上述结果的应用,我们确定了具有最大Zα的极值图,对于α>;1和β≤2,分别在树、单环图和具有给定悬垂顶点数、最大度、独立数、匹配数和支配数的双环图的集合中。这些扩展了一些已发表论文的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信