{"title":"Solvability of thirty-six three-dimensional systems of difference equations of hyperbolic-cotangent type","authors":"S. Stević","doi":"10.14232/ejqtde.2022.1.26","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.26","url":null,"abstract":"We present thirty-six classes of three-dimensional systems of difference equations of the hyperbolic-cotangent type which are solvable in closed form.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66584116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Periodic and bounded solutions of functional differential equations with small delays","authors":"Michal Feckan, J. Pacuta","doi":"10.14232/ejqtde.2022.1.33","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.33","url":null,"abstract":"We study existence and local uniqueness of periodic solutions of nonlinear functional differential equations of first order with small delays. Bifurcations of periodic and bounded solutions of particular periodically forced second-order equations with small delays are investigated as well.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66584653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-term behavior of nonautonomous neutral compartmental systems","authors":"Sylvia Novo, Víctor M. Villarragut","doi":"10.14232/ejqtde.2022.1.7","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.7","url":null,"abstract":"The asymptotic behavior of the trajectories of compartmental systems with a general set of admissible initial data is studied. More precisely, these systems are described by families of monotone nonautonomous neutral functional differential equations with nonautonomous operator. We show that the solutions asymptotically exhibit the same recurrence properties as the transport functions and the coefficients of the neutral operator. Conditions for the cases in which the delays in the neutral and non neutral parts are different, as well as for other cases unaddressed in the previous literature are also obtained.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66585371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Equations Jorge Rodríguez–López, R. Precup, C. Gheorghiu
{"title":"On the localization and numerical computation of positive radial\u0000 solutions for \u0000 ϕ\u0000 \u0000 \u0000-Laplace equations in the annulus","authors":"\t\tEquations\t\t\tJorge Rodríguez–López, R. Precup, C. Gheorghiu","doi":"10.14232/ejqtde.2022.1.47","DOIUrl":"https://doi.org/10.14232/ejqtde.2022.1.47","url":null,"abstract":"The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ -Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The results are based on the homotopy version of Krasnosel'skii's fixed point theorem and Harnack type inequalities, first established for each one of the boundary conditions. As a consequence, the problem of multiple solutions is solved in a natural way. Numerical experiments confirming the theory, one for each of the three sets of boundary conditions, are performed by using the MATLAB object-oriented package Chebfun.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81667728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}