{"title":"Iterative solution of elliptic equations","authors":"P. Korman, D. Schmidt","doi":"10.14232/ejqtde.2022.1.34","DOIUrl":null,"url":null,"abstract":"<jats:p>We reduce solution of the Dirichlet problem (<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>D</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:math>) <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>in </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>on </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> </mml:math> to iterative solution of a simpler problem <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thickmathspace\" /> <mml:mspace width=\"thickmathspace\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>in </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> <mml:mo>,</mml:mo> <mml:mspace width=\"thickmathspace\" /> <mml:mspace width=\"thickmathspace\" /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=\"thickmathspace\" /> <mml:mspace width=\"thickmathspace\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>on </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> <mml:mspace width=\"thinmathspace\" /> <mml:mo>,</mml:mo> </mml:math> for which one can use either Fourier series or Green's function method. The method is suitable for numerical computations, particularly when one uses Newton's method for semilinear problems <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>in </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> <mml:mo>,</mml:mo> <mml:mspace width=\"2em\" /> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>on </mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>D</mml:mi> </mml:mrow> </mml:mstyle> <mml:mo>,</mml:mo> </mml:math>.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.34","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We reduce solution of the Dirichlet problem (x∈D⊂Rm) Δu(x)+a(x)u(x)=f(x)in D,u=0on ∂D to iterative solution of a simpler problem Δu=f(x)in D,u=0on ∂D, for which one can use either Fourier series or Green's function method. The method is suitable for numerical computations, particularly when one uses Newton's method for semilinear problems Δu+g(x,u)=0in D,u=0on ∂D,.
我们将Dirichlet问题(x∈D∧R m) Δ u (x) + a (x) u (x) = f (x)在D中,u = 0在∂D中简化为一个更简单的问题Δ u = f (x)在D中,u = 0在∂D中,可以使用傅里叶级数或格林函数方法。该方法适用于数值计算,特别是当人们使用牛顿方法解决半线性问题Δ u + g (x, u) = 0在D中,u = 0在∂D中,。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.