环空中φ -Laplace方程径向正解的局部化与数值计算

IF 1.1 4区 数学 Q1 MATHEMATICS
Equations Jorge Rodríguez–López, R. Precup, C. Gheorghiu
{"title":"环空中φ -Laplace方程径向正解的局部化与数值计算","authors":"\t\tEquations\t\t\tJorge Rodríguez–López, R. Precup, C. Gheorghiu","doi":"10.14232/ejqtde.2022.1.47","DOIUrl":null,"url":null,"abstract":"The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ -Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The results are based on the homotopy version of Krasnosel'skii's fixed point theorem and Harnack type inequalities, first established for each one of the boundary conditions. As a consequence, the problem of multiple solutions is solved in a natural way. Numerical experiments confirming the theory, one for each of the three sets of boundary conditions, are performed by using the MATLAB object-oriented package Chebfun.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"15 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the localization and numerical computation of positive radial\\n solutions for \\n ϕ\\n \\n \\n-Laplace equations in the annulus\",\"authors\":\"\\t\\tEquations\\t\\t\\tJorge Rodríguez–López, R. Precup, C. Gheorghiu\",\"doi\":\"10.14232/ejqtde.2022.1.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ -Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The results are based on the homotopy version of Krasnosel'skii's fixed point theorem and Harnack type inequalities, first established for each one of the boundary conditions. As a consequence, the problem of multiple solutions is solved in a natural way. Numerical experiments confirming the theory, one for each of the three sets of boundary conditions, are performed by using the MATLAB object-oriented package Chebfun.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.47\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.47","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了环空中含有广义φ -拉普拉斯算子的平稳偏微分方程正径向解的存在性和局域性。考虑了三组边界条件:Dirichlet-Neumann、Neumann-Dirichlet和Dirichlet-Dirichlet。结果是基于Krasnosel'skii's不动点定理的同伦版本和Harnack型不等式,首先为每个边界条件建立。因此,多重解决方案的问题以一种自然的方式得到了解决。利用MATLAB面向对象软件包Chebfun对三组边界条件分别进行了数值实验,验证了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the localization and numerical computation of positive radial solutions for ϕ -Laplace equations in the annulus
The paper deals with the existence and localization of positive radial solutions for stationary partial differential equations involving a general ϕ -Laplace operator in the annulus. Three sets of boundary conditions are considered: Dirichlet–Neumann, Neumann–Dirichlet and Dirichlet–Dirichlet. The results are based on the homotopy version of Krasnosel'skii's fixed point theorem and Harnack type inequalities, first established for each one of the boundary conditions. As a consequence, the problem of multiple solutions is solved in a natural way. Numerical experiments confirming the theory, one for each of the three sets of boundary conditions, are performed by using the MATLAB object-oriented package Chebfun.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信