Electronic Journal of Qualitative Theory of Differential Equations最新文献

筛选
英文 中文
Multiple positive solutions for singular anisotropic Dirichlet problems 奇异各向异性狄利克雷问题的多重正解
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.47
Zhenhai Liu, N. Papageorgiou
{"title":"Multiple positive solutions for singular anisotropic Dirichlet problems","authors":"Zhenhai Liu, N. Papageorgiou","doi":"10.14232/ejqtde.2021.1.47","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.47","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66582360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillatory solutions of Emden-Fowler type differential equation Emden-Fowler型微分方程的振动解
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.54
M. Bartusek, Z. Došlá, M. Marini
{"title":"Oscillatory solutions of Emden-Fowler type differential equation","authors":"M. Bartusek, Z. Došlá, M. Marini","doi":"10.14232/ejqtde.2021.1.54","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.54","url":null,"abstract":"The paper deals with the coexistence between the oscillatory dynamics and the nonoscillatory one for a generalized super-linear Emden-Fowler differential equation. In particular, the coexistence of infinitely many oscillatory solutions with unbounded positive solutions are proved. The asymptotics of the unbounded positive solutions are described as well.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66582893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bistable equation with discontinuous density dependent diffusion with degenerations and singularities 具有退化和奇点的不连续密度相关扩散的双稳方程
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.61
P. Drábek, Michaela Zahradníková
{"title":"Bistable equation with discontinuous density dependent diffusion with degenerations and singularities","authors":"P. Drábek, Michaela Zahradníková","doi":"10.14232/ejqtde.2021.1.61","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.61","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory 与chen - simons规范理论耦合的广义拟线性Schrödinger方程基态解存在性的新结果
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.73
Yingying Xiao, Chuanxi Zhu
{"title":"New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory","authors":"Yingying Xiao, Chuanxi Zhu","doi":"10.14232/ejqtde.2021.1.73","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.73","url":null,"abstract":"<jats:p>In this paper, we study the following quasilinear Schrödinger equation <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable columnalign=\"right left\" rowspacing=\"3pt\" columnspacing=\"0em\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> </mml:mtd> <mml:mtd> <mml:mi /> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>κ<!-- κ --></mml:mi> <mml:mi>u</mml:mi> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi>h</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>κ<!-- κ --></mml:mi> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi /> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Attractivity analysis on a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays 具有斑块结构和多对时变时滞的新古典生长系统的吸引性分析
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.76
Equations Qian Cao
{"title":"Attractivity analysis on a neoclassical growth system incorporating\u0000 patch structure and multiple pairs of time-varying delays","authors":"\t\tEquations\t\t\tQian Cao","doi":"10.14232/ejqtde.2021.1.76","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.76","url":null,"abstract":"In this paper, we focus on the global dynamics of a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays. Firstly, we prove the global existence, positiveness and boundedness of solutions for the addressed system. Secondly, by employing some novel differential inequality analyses and the fluctuation lemma, both delay-independent and delay-dependent criteria are established to ensure that all solutions are convergent to the unique positive equilibrium point, which supplement and improve some existing results. Finally, some numerical examples are afforded to illustrate the effectiveness and feasibility of the theoretical findings.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"51 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91274713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rectifiability of orbits for two-dimensional nonautonomous differential systems 二维非自治微分系统的轨道可整流性
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/EJQTDE.2021.1.18
M. Onitsuka, Satoshi Tanaka
{"title":"Rectifiability of orbits for two-dimensional nonautonomous differential systems","authors":"M. Onitsuka, Satoshi Tanaka","doi":"10.14232/EJQTDE.2021.1.18","DOIUrl":"https://doi.org/10.14232/EJQTDE.2021.1.18","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-23"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66580426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Topological entropy for impulsive differential equations" [Electron. J. Qual. Theory Differ. Equ. 2020, No. 68, 1–15] “脉冲微分方程的拓扑熵”的勘误[电子]。J.理论不同。《科学通报》,2020年第68期,1-15页。
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/EJQTDE.2021.1.19
J. Andres
{"title":"Corrigendum to \"Topological entropy for impulsive differential equations\" [Electron. J. Qual. Theory Differ. Equ. 2020, No. 68, 1–15]","authors":"J. Andres","doi":"10.14232/EJQTDE.2021.1.19","DOIUrl":"https://doi.org/10.14232/EJQTDE.2021.1.19","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-3"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66580507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations 非线性二阶常微分方程异斜解的存在唯一性及定性性质
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/EJQTDE.2021.1.1
M. Pei, Libo Wang, Xuezhe Lv
{"title":"Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations","authors":"M. Pei, Libo Wang, Xuezhe Lv","doi":"10.14232/EJQTDE.2021.1.1","DOIUrl":"https://doi.org/10.14232/EJQTDE.2021.1.1","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66580616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Explicit solution and dynamical properties of atmospheric Ekman flows with boundary conditions 具有边界条件的大气Ekman流的显式解及其动力学性质
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/EJQTDE.2021.1.30
Y. Guan, Jinrong Wang, Michal Feckan
{"title":"Explicit solution and dynamical properties of atmospheric Ekman flows with boundary conditions","authors":"Y. Guan, Jinrong Wang, Michal Feckan","doi":"10.14232/EJQTDE.2021.1.30","DOIUrl":"https://doi.org/10.14232/EJQTDE.2021.1.30","url":null,"abstract":"","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-19"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66581454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A saddle point type solution for a system of operator equations 算子方程组的鞍点型解
IF 1.1 4区 数学
Electronic Journal of Qualitative Theory of Differential Equations Pub Date : 2021-01-01 DOI: 10.14232/ejqtde.2021.1.75
Piotr Kowalski
{"title":"A saddle point type solution for a system of operator equations","authors":"Piotr Kowalski","doi":"10.14232/ejqtde.2021.1.75","DOIUrl":"https://doi.org/10.14232/ejqtde.2021.1.75","url":null,"abstract":"<jats:p>Let <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mrow><mml:mi>Ω</mml:mi><mml:mo>⊂</mml:mo><mml:msup><mml:mrow><mml:mstyle mathvariant=\"double-struck\"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:mstyle></mml:mrow><mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math> n>1 and let <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mrow><mml:mi>p</mml:mi><mml:mi>,</mml:mi><mml:mi>q</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>. We consider the system of nonlinear Dirichlet problems <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mrow><mml:mspace linebreak=\"newline\" /><mml:mi>e</mml:mi><mml:mi>q</mml:mi><mml:mi>u</mml:mi><mml:mi>a</mml:mi><mml:mi>t</mml:mi><mml:mi>i</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi><mml:mo>*</mml:mo></mml:mrow><mml:mrow> <mml:mfenced open=\"{\" close=\" \"><mml:mrow><mml:mi>b</mml:mi><mml:mi>r</mml:mi><mml:mi>a</mml:mi><mml:mi>c</mml:mi><mml:mi>e</mml:mi><mml:mtable columnalign=\"left\"><mml:mtr><mml:mtd><mml:mrow><mml:mo>(</mml:mo><mml:mi>A</mml:mi><mml:mi>u</mml:mi><mml:mo>)</mml:mo><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mtd><mml:mtd><mml:mrow><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi>u</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mrow><mml:mi>′</mml:mi></mml:mrow></mml:mrow></mml:msubsup><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mi>,</mml:mi><mml:mi>u</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>,</mml:mi><mml:mi>v</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mo>)</mml:mo><mml:mi>,</mml:mi></mml:mrow></mml:mtd><mml:mtd><mml:mrow /></mml:mtd><mml:mtd><mml:mrow><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi>Ω</mml:mi><mml:mi>,</mml:mi></mml:mrow></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow /></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow /></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mi>r</mml:mi><mml:mo>-</mml:mo><mml:mo>(</mml:mo><mml:mi>B</mml:mi><mml:mi>v</mml:mi><mml:mo>)</mml:mo><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mtd><mml:mtd><mml:mrow><mml:mo>=</mml:mo><mml:msubsup><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi>v</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mrow><mml:mi>′</mml:mi></mml:mrow></mml:mrow></mml:msubsup><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mi>,</mml:mi><mml:mi>u</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>,</mml:mi><mml:mi>v</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mo>)</mml:mo><mml:mi>,</mml:mi></mml:mrow></mml:mtd><mml:mtd><mml:mrow /></mml:mtd><mml:mtd><mml:mrow><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mi>Ω</mml:mi><mml:mi>,</mml:mi></mml:mrow></mml:mtd></mml:mtr><mml:mtr","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66583180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信