{"title":"Convective instability in a diffusive predator–prey system","authors":"Hui-sheng Chen, Xuelian Xu","doi":"10.14232/ejqtde.2021.1.74","DOIUrl":null,"url":null,"abstract":"It is well known that biological pattern formation is the Turing mechanism, in which a homogeneous steady state is destabilized by the addition of diffusion, though it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic ODEs are rarely mentioned. This paper concerns a reaction diffusion advection system under Neumann boundary conditions, where steady states that are unstable in the kinetic ODEs. Our results provide a stabilization strategy for the same steady state, the combination of large advection rate and small diffusion rate can stabilize the homogeneous equilibrium. Moreover, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2021.1.74","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that biological pattern formation is the Turing mechanism, in which a homogeneous steady state is destabilized by the addition of diffusion, though it is stable in the kinetic ODEs. However, steady states that are unstable in the kinetic ODEs are rarely mentioned. This paper concerns a reaction diffusion advection system under Neumann boundary conditions, where steady states that are unstable in the kinetic ODEs. Our results provide a stabilization strategy for the same steady state, the combination of large advection rate and small diffusion rate can stabilize the homogeneous equilibrium. Moreover, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.