具有阶段结构和分布延迟的随机竞争系统的最优收获

IF 1.1 4区 数学 Q1 MATHEMATICS
Yue Zhang, Jing Zhang
{"title":"具有阶段结构和分布延迟的随机竞争系统的最优收获","authors":"Yue Zhang, Jing Zhang","doi":"10.14232/EJQTDE.2021.1.25","DOIUrl":null,"url":null,"abstract":"A stochastic competition system with harvesting and distributed delay is investigated, which is described by stochastic differential equations with distributed delay. The existence and uniqueness of a global positive solution are proved via Lyapunov functions, and an ergodic method is used to obtain that the system is asymptotically stable in distribution. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of the stochastic competition system are established. We thereby obtain the optimal harvest strategy and maximum net economic revenue by the optimal harvesting theory of differential equations.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":"1-22"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal harvesting for a stochastic competition system with stage structure and distributed delay\",\"authors\":\"Yue Zhang, Jing Zhang\",\"doi\":\"10.14232/EJQTDE.2021.1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic competition system with harvesting and distributed delay is investigated, which is described by stochastic differential equations with distributed delay. The existence and uniqueness of a global positive solution are proved via Lyapunov functions, and an ergodic method is used to obtain that the system is asymptotically stable in distribution. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of the stochastic competition system are established. We thereby obtain the optimal harvest strategy and maximum net economic revenue by the optimal harvesting theory of differential equations.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/EJQTDE.2021.1.25\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/EJQTDE.2021.1.25","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了一类具有收获和分布延迟的随机竞争系统,用具有分布延迟的随机微分方程来描述。利用Lyapunov函数证明了系统整体正解的存在唯一性,并利用遍历方法证明了系统在分布上渐近稳定。利用随机微分方程的比较定理和极限优越理论,建立了随机竞争系统均值持续和消光的充分条件。利用微分方程的最优收获理论,得到了最优收获策略和最大净经济收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal harvesting for a stochastic competition system with stage structure and distributed delay
A stochastic competition system with harvesting and distributed delay is investigated, which is described by stochastic differential equations with distributed delay. The existence and uniqueness of a global positive solution are proved via Lyapunov functions, and an ergodic method is used to obtain that the system is asymptotically stable in distribution. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of the stochastic competition system are established. We thereby obtain the optimal harvest strategy and maximum net economic revenue by the optimal harvesting theory of differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信