临界线性差分方程的特殊情况

IF 1.1 4区 数学 Q1 MATHEMATICS
Equations J. Jekl
{"title":"临界线性差分方程的特殊情况","authors":"\t\tEquations\t\t\tJ. Jekl","doi":"10.14232/ejqtde.2021.1.79","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate even-order linear difference equations and their criticality. However, we restrict our attention only to several special cases of the general Sturm–Liouville equation. We wish to investigate on such cases a possible converse of a known theorem. This theorem holds for second-order equations as an equivalence; however, only one implication is known for even-order equations. First, we show the converse in a sense for one term equations. Later, we show an upper bound on criticality for equations with nonnegative coefficients as well. Finally, we extend the criticality of the second-order linear self-adjoint equation for the class of equations with interlacing indices. In this way, we can obtain concrete examples aiding us with our investigation.","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"29 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Special cases of critical linear difference equations\",\"authors\":\"\\t\\tEquations\\t\\t\\tJ. Jekl\",\"doi\":\"10.14232/ejqtde.2021.1.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate even-order linear difference equations and their criticality. However, we restrict our attention only to several special cases of the general Sturm–Liouville equation. We wish to investigate on such cases a possible converse of a known theorem. This theorem holds for second-order equations as an equivalence; however, only one implication is known for even-order equations. First, we show the converse in a sense for one term equations. Later, we show an upper bound on criticality for equations with nonnegative coefficients as well. Finally, we extend the criticality of the second-order linear self-adjoint equation for the class of equations with interlacing indices. In this way, we can obtain concrete examples aiding us with our investigation.\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2021.1.79\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2021.1.79","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了偶阶线性差分方程及其临界性。然而,我们的注意力只局限于一般Sturm-Liouville方程的几个特殊情况。我们希望在这种情况下研究已知定理的一个可能的逆。这个定理对于二阶方程是等价的;然而,对于偶阶方程只有一个已知的含义。首先,我们在一项方程的某种意义上证明了相反的情况。随后,我们也给出了非负系数方程的临界上界。最后,我们将二阶线性自伴随方程的临界性推广到一类具有交错指标的方程。通过这种方式,我们可以获得具体的例子来帮助我们进行调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special cases of critical linear difference equations
In this paper, we investigate even-order linear difference equations and their criticality. However, we restrict our attention only to several special cases of the general Sturm–Liouville equation. We wish to investigate on such cases a possible converse of a known theorem. This theorem holds for second-order equations as an equivalence; however, only one implication is known for even-order equations. First, we show the converse in a sense for one term equations. Later, we show an upper bound on criticality for equations with nonnegative coefficients as well. Finally, we extend the criticality of the second-order linear self-adjoint equation for the class of equations with interlacing indices. In this way, we can obtain concrete examples aiding us with our investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信