Weighted L p -type regularity estimates for nonlinear parabolic equations with Orlicz growth

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Yao
{"title":"Weighted L p -type regularity estimates for nonlinear parabolic equations with Orlicz growth","authors":"F. Yao","doi":"10.14232/ejqtde.2022.1.17","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper we obtain the following weighted <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math>-type regularity estimates <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>w</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mtext> </mml:mtext> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>locally</mml:mtext> </mml:mstyle> <mml:mo stretchy=\"false\">⇒<!-- ⇒ --></mml:mo> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>ν<!-- ν --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>w</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mtext> </mml:mtext> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>locally</mml:mtext> </mml:mstyle> </mml:math> for any <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>q</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:math> of weak solutions for non-homogeneous nonlinear parabolic equations with Orlicz growth <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>a</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>a</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> under some proper assumptions on the functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">f</mml:mi> </mml:mrow> </mml:math>, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mn>0</mml:mn> <mml:mi>t</mml:mi> </mml:msubsup> <mml:mi>τ<!-- τ --></mml:mi> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mi>d</mml:mi> <mml:mi>τ<!-- τ --></mml:mi> </mml:math>. Moreover, we remark that two natural examples of functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> are <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>(</mml:mtext> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> <mml:mtext>-Laplace equation)</mml:mtext> </mml:mstyle> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>and</mml:mtext> </mml:mstyle> <mml:mspace width=\"1em\" /> <mml:mi>a</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>log</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo> </mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo> </mml:mrow> <mml:mspace width=\"1em\" /> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mtext>for</mml:mtext> </mml:mstyle> <mml:mtext> </mml:mtext> <mml:mi>α<!-- α --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0.</mml:mn> </mml:math> Moreover, our results improve the known results for such equations.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.17","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we obtain the following weighted L p -type regularity estimates B ( | f | ) L q ( ν , ν + T ; L w q ( Ω ) )   locally B ( | u | ) L q ( ν , ν + T ; L w q ( Ω ) )   locally for any q > 1 of weak solutions for non-homogeneous nonlinear parabolic equations with Orlicz growth u t div ( a ( ( A u u ) 1 2 ) A u ) = div ( a ( | f | ) f ) under some proper assumptions on the functions a , w , A and f , where B ( t ) = 0 t τ a ( τ ) d τ . Moreover, we remark that two natural examples of functions a ( t ) are a ( t ) = t p 2 ( p -Laplace equation) and a ( t ) = t p 2 log α ( 1 + t ) for   α > 0. Moreover, our results improve the known results for such equations.
具有Orlicz增长的非线性抛物方程的加权L p型正则性估计
本文得到了以下加权L p型正则性估计B (| f |)∈L q (ν, ν + T;L w q (Ω))局部⇒B(|∇u |)∈L q (ν, ν + T;L w q (Ω))局部求解具有Orlicz增长的非齐次非线性抛物方程弱解的任意q > 1) A∇u) = div (A (| f |) f),在函数A, w, A和f的适当假设下,其中B (t) =∫0 t τ A (τ) d τ。此外,我们注意到函数a (t)的两个自然例子是a (t) = t p−2 (p -拉普拉斯方程)和a (t) = t p−2 log α > 0。此外,我们的结果改进了已知的此类方程的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信