{"title":"一类含不定符号反应项的双相问题特征值的存在性和多重性","authors":"Vasile-Florin Uţă","doi":"10.14232/ejqtde.2022.1.5","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the following class of double-phase nonlinear eigenvalue problems <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> in <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> on <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math> is a bounded domain from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and the potential functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ψ<!-- ψ --></mml:mi> </mml:math> have <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable <jats:italic>u</jats:italic> and allows us to study functions with slower growth near <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:math>, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:math>, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and multiplicity of eigenvalues for some double-phase problems involving an indefinite sign reaction term\",\"authors\":\"Vasile-Florin Uţă\",\"doi\":\"10.14232/ejqtde.2022.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We study the following class of double-phase nonlinear eigenvalue problems <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> in <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> </mml:math>, <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> on <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> </mml:math>, where <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> </mml:math> is a bounded domain from <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and the potential functions <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:math> and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ψ<!-- ψ --></mml:mi> </mml:math> have <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable <jats:italic>u</jats:italic> and allows us to study functions with slower growth near <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>+</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:math>, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:math>, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
我们研究了以下一类双相非线性特征值问题- div (φ (x, |∇u |)∇u + ψ (x, |∇u |)∇u] = λ f (x, u)in Ω, u = 0 on∂Ω,其中Ω是rn的有界域,势能函数φ和ψ有(p1 (x);p2 (x))变量增长。问题的反应项的原语(右侧)在变量u中有不定符号,允许我们研究在+∞附近增长较慢的函数,即它不满足Ambrosetti-Rabinowitz条件。在这些假设下,我们证明了对于每一个参数λ∈R +∗,问题有一个无界弱解序列。这些证明依赖于基于能量估计的变分论证和喷泉定理的使用。
Existence and multiplicity of eigenvalues for some double-phase problems involving an indefinite sign reaction term
We study the following class of double-phase nonlinear eigenvalue problems −div[ϕ(x,|∇u|)∇u+ψ(x,|∇u|)∇u]=λf(x,u) in Ω, u=0 on ∂Ω, where Ω is a bounded domain from RN and the potential functions ϕ and ψ have (p1(x);p2(x)) variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable u and allows us to study functions with slower growth near +∞, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter λ∈R+∗, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.