Multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Ji, YongDe Zhang, V. Rǎdulescu
{"title":"Multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth","authors":"Chao Ji, YongDe Zhang, V. Rǎdulescu","doi":"10.14232/ejqtde.2022.1.21","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we are concerned with the following magnetic Schrödinger–Poisson system <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo> <mml:mi>u</mml:mi> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> is a parameter, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> </mml:math> is a subcritical nonlinearity, the potential <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:math> is a continuous function verifying some conditions, the magnetic potential <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>l</mml:mi> <mml:mi>o</mml:mi> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . Assuming that the zero set of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> has several isolated connected components <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:math> such that the interior of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is non-empty and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is smooth, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>j</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> </mml:math>, then for <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> large enough, we use the variational methods to show that the above system has at least <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:math> multi-bump solutions.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.21","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we are concerned with the following magnetic Schrödinger–Poisson system { ( + i A ( x ) ) 2 u + ( λ V ( x ) + 1 ) u + ϕ u = α f ( | u | 2 ) u + | u | 4 u ,  in  R 3 , Δ ϕ = u 2 ,  in  R 3 , where λ > 0 is a parameter, f is a subcritical nonlinearity, the potential V : R 3 R is a continuous function verifying some conditions, the magnetic potential A L l o c 2 ( R 3 , R 3 ) . Assuming that the zero set of V ( x ) has several isolated connected components Ω 1 , , Ω k such that the interior of Ω j is non-empty and Ω j is smooth, where j { 1 , , k } , then for λ > 0 large enough, we use the variational methods to show that the above system has at least 2 k 1 multi-bump solutions.
具有临界生长的磁性Schrödinger-Poisson系统的多碰撞解决方案
在本文中,我们关注以下磁性Schrödinger-Poisson系统{−(∇+ i A (x)) 2u + (λ V)(x) + 1) u + φ u = α f (| u | 2) u + | u在r3中,−Δ ϕ = u 2,在R 3中,其中λ > 0为参数,f为亚临界非线性,势V: r3→R为连续函数,验证某些条件,磁势a∈L L o c2 (r3, r3)。假设V (x)的零集有几个孤立的连通分量Ω 1,…,Ω k,使得Ω j的内部是非空的,∂Ω j是光滑的,其中j∈{1,…,k},那么对于λ >足够大,我们使用变分方法证明了上述系统至少有2k−1个多凹凸解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信