具有临界生长的磁性Schrödinger-Poisson系统的多碰撞解决方案

IF 1.1 4区 数学 Q1 MATHEMATICS
Chao Ji, YongDe Zhang, V. Rǎdulescu
{"title":"具有临界生长的磁性Schrödinger-Poisson系统的多碰撞解决方案","authors":"Chao Ji, YongDe Zhang, V. Rǎdulescu","doi":"10.14232/ejqtde.2022.1.21","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we are concerned with the following magnetic Schrödinger–Poisson system <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <mml:mtable columnalign=\"right left right left right left right left right left right left\" rowspacing=\"3pt\" columnspacing=\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\" displaystyle=\"true\"> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\"left left\" rowspacing=\".2em\" columnspacing=\"1em\" displaystyle=\"false\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo> <mml:mi>u</mml:mi> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" /> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> is a parameter, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>f</mml:mi> </mml:math> is a subcritical nonlinearity, the potential <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:math> is a continuous function verifying some conditions, the magnetic potential <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>l</mml:mi> <mml:mi>o</mml:mi> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . Assuming that the zero set of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> has several isolated connected components <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:math> such that the interior of <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is non-empty and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:msub> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is smooth, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>j</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> </mml:math>, then for <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> large enough, we use the variational methods to show that the above system has at least <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:math> multi-bump solutions.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth\",\"authors\":\"Chao Ji, YongDe Zhang, V. Rǎdulescu\",\"doi\":\"10.14232/ejqtde.2022.1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, we are concerned with the following magnetic Schrödinger–Poisson system <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <mml:mtable columnalign=\\\"right left right left right left right left right left right left\\\" rowspacing=\\\"3pt\\\" columnspacing=\\\"0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em\\\" displaystyle=\\\"true\\\"> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign=\\\"left left\\\" rowspacing=\\\".2em\\\" columnspacing=\\\"1em\\\" displaystyle=\\\"false\\\"> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi> <mml:mo>+</mml:mo> <mml:mi>i</mml:mi> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>u</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|</mml:mo> <mml:mi>u</mml:mi> <mml:msup> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=\\\"normal\\\">Δ<!-- Δ --></mml:mi> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> <mml:mtd> <mml:mtext> in </mml:mtext> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" /> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:math> where <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> is a parameter, <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>f</mml:mi> </mml:math> is a subcritical nonlinearity, the potential <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:math> is a continuous function verifying some conditions, the magnetic potential <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>A</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>l</mml:mi> <mml:mi>o</mml:mi> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> . Assuming that the zero set of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:math> has several isolated connected components <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:math> such that the interior of <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is non-empty and <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:msub> <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:math> is smooth, where <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>j</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> </mml:math>, then for <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:math> large enough, we use the variational methods to show that the above system has at least <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:math> multi-bump solutions.</jats:p>\",\"PeriodicalId\":50537,\"journal\":{\"name\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Qualitative Theory of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14232/ejqtde.2022.1.21\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们关注以下磁性Schrödinger-Poisson系统{−(∇+ i A (x)) 2u + (λ V)(x) + 1) u + φ u = α f (| u | 2) u + | u在r3中,−Δ ϕ = u 2,在R 3中,其中λ > 0为参数,f为亚临界非线性,势V: r3→R为连续函数,验证某些条件,磁势a∈L L o c2 (r3, r3)。假设V (x)的零集有几个孤立的连通分量Ω 1,…,Ω k,使得Ω j的内部是非空的,∂Ω j是光滑的,其中j∈{1,…,k},那么对于λ >足够大,我们使用变分方法证明了上述系统至少有2k−1个多凹凸解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-bump solutions for the magnetic Schrödinger–Poisson system with critical growth
In this paper, we are concerned with the following magnetic Schrödinger–Poisson system { ( + i A ( x ) ) 2 u + ( λ V ( x ) + 1 ) u + ϕ u = α f ( | u | 2 ) u + | u | 4 u ,  in  R 3 , Δ ϕ = u 2 ,  in  R 3 , where λ > 0 is a parameter, f is a subcritical nonlinearity, the potential V : R 3 R is a continuous function verifying some conditions, the magnetic potential A L l o c 2 ( R 3 , R 3 ) . Assuming that the zero set of V ( x ) has several isolated connected components Ω 1 , , Ω k such that the interior of Ω j is non-empty and Ω j is smooth, where j { 1 , , k } , then for λ > 0 large enough, we use the variational methods to show that the above system has at least 2 k 1 multi-bump solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信