{"title":"Existence and multiplicity of eigenvalues for some double-phase problems involving an indefinite sign reaction term","authors":"Vasile-Florin Uţă","doi":"10.14232/ejqtde.2022.1.5","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the following class of double-phase nonlinear eigenvalue problems <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> in <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> on <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math> is a bounded domain from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and the potential functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ψ<!-- ψ --></mml:mi> </mml:math> have <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable <jats:italic>u</jats:italic> and allows us to study functions with slower growth near <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:math>, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:math>, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We study the following class of double-phase nonlinear eigenvalue problems −div[ϕ(x,|∇u|)∇u+ψ(x,|∇u|)∇u]=λf(x,u) in Ω, u=0 on ∂Ω, where Ω is a bounded domain from RN and the potential functions ϕ and ψ have (p1(x);p2(x)) variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable u and allows us to study functions with slower growth near +∞, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter λ∈R+∗, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.
期刊介绍:
The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875.
All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.