Existence and multiplicity of eigenvalues for some double-phase problems involving an indefinite sign reaction term

IF 1.1 4区 数学 Q1 MATHEMATICS
Vasile-Florin Uţă
{"title":"Existence and multiplicity of eigenvalues for some double-phase problems involving an indefinite sign reaction term","authors":"Vasile-Florin Uţă","doi":"10.14232/ejqtde.2022.1.5","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the following class of double-phase nonlinear eigenvalue problems <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> in <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:math> on <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math>, where <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> </mml:math> is a bounded domain from <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and the potential functions <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϕ<!-- ϕ --></mml:mi> </mml:math> and <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ψ<!-- ψ --></mml:mi> </mml:math> have <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>;</mml:mo> <mml:msub> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable <jats:italic>u</jats:italic> and allows us to study functions with slower growth near <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:math>, that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> </mml:math>, the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.</jats:p>","PeriodicalId":50537,"journal":{"name":"Electronic Journal of Qualitative Theory of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Qualitative Theory of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14232/ejqtde.2022.1.5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study the following class of double-phase nonlinear eigenvalue problems div [ ϕ ( x , | u | ) u + ψ ( x , | u | ) u ] = λ f ( x , u ) in Ω , u = 0 on Ω , where Ω is a bounded domain from R N and the potential functions ϕ and ψ have ( p 1 ( x ) ; p 2 ( x ) ) variable growth. The primitive of the reaction term of the problem (the right-hand side) has indefinite sign in the variable u and allows us to study functions with slower growth near + , that is, it does not satisfy the Ambrosetti–Rabinowitz condition. Under these hypotheses we prove that for every parameter λ R + , the problem has an unbounded sequence of weak solutions. The proofs rely on variational arguments based on energy estimates and the use of Fountain Theorem.
一类含不定符号反应项的双相问题特征值的存在性和多重性
我们研究了以下一类双相非线性特征值问题- div (φ (x, |∇u |)∇u + ψ (x, |∇u |)∇u] = λ f (x, u)in Ω, u = 0 on∂Ω,其中Ω是rn的有界域,势能函数φ和ψ有(p1 (x);p2 (x))变量增长。问题的反应项的原语(右侧)在变量u中有不定符号,允许我们研究在+∞附近增长较慢的函数,即它不满足Ambrosetti-Rabinowitz条件。在这些假设下,我们证明了对于每一个参数λ∈R +∗,问题有一个无界弱解序列。这些证明依赖于基于能量估计的变分论证和喷泉定理的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
9.10%
发文量
23
审稿时长
3 months
期刊介绍: The Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) is a completely open access journal dedicated to bringing you high quality papers on the qualitative theory of differential equations. Papers appearing in EJQTDE are available in PDF format that can be previewed, or downloaded to your computer. The EJQTDE is covered by the Mathematical Reviews, Zentralblatt and Scopus. It is also selected for coverage in Thomson Reuters products and custom information services, which means that its content is indexed in Science Citation Index, Current Contents and Journal Citation Reports. Our journal has an impact factor of 1.827, and the International Standard Serial Number HU ISSN 1417-3875. All topics related to the qualitative theory (stability, periodicity, boundedness, etc.) of differential equations (ODE''s, PDE''s, integral equations, functional differential equations, etc.) and their applications will be considered for publication. Research articles are refereed under the same standards as those used by any journal covered by the Mathematical Reviews or the Zentralblatt (blind peer review). Long papers and proceedings of conferences are accepted as monographs at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信