Vydha Pradeep Kumar, Deepak Kumar Panda, Aruru Sai Kumar, B. Naresh Kumar Reddy, Ch. Rama Prakasha Reddy
{"title":"Analyzing Fully Depleted SOI NC-MOSFET for Enhanced Bio-Sensor and Digital Circuit Applications","authors":"Vydha Pradeep Kumar, Deepak Kumar Panda, Aruru Sai Kumar, B. Naresh Kumar Reddy, Ch. Rama Prakasha Reddy","doi":"10.1049/cds2/5585625","DOIUrl":"https://doi.org/10.1049/cds2/5585625","url":null,"abstract":"<div>\u0000 <p>The proposed research paper focuses on the study of fully depleted silicon (Si)-on-insulator negative capacitance metal oxide-semiconductor field-effect transistor (FDSOI-NC-MOSFET) performance for biosensor and digital circuit applications. The study mainly aims to use ferroelectric (FE) material to improve the performance and efficiency of FDSOI-NC-MOSFETs compared to conventional planar MOSFETs. Using TCAD software, the proposed device is simulated and analyzed under various parameter conditions (parameters like temperature, channel thickness, input supply voltages, and channel doping levels). Later, the proposed device is also designed for different biomolecular structures to analyze the selectivity and sensitivity behavior of the device. Sensitivity is the change in electrical characteristics in response to applied external stimuli or parameters like current and voltages. Variations in these parameters will affect the operating region of the device, thereby, the choice of parameters in achieving the best performance will depend on the operating conditions and device applications. NC-MOSFET with FE materials can obtain an acceptable on/off current ratio by lowering the off current and can achieve an adequate subthreshold swing (SS), thus, observed that the NC-MOSFET device has enhanced performance and transfer characteristics in comparison to planar MOSFET. For <i>K</i> = 4, at an input voltage of 0.25 V, the <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio was 6.21 × 10<sup>5</sup> and the sensitivity was 6.20 × 10<sup>7</sup> and at 0.5 V, these values rise to 8.07 × 10<sup>5</sup> and 8.073 × 10<sup>7</sup>, respectively. Similarly for <i>K</i> = 6 and at an input voltage of 0.25 V, we observed an <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio is 1.5 × 10<sup>7</sup> and a sensitivity of 1.52 × 10<sup>9</sup>. When the input voltage was increased to 0.5 V, the <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio improved to 2.07 × 10<sup>7</sup> and the sensitivity increased to 2.073 × 10<sup>9</sup>. From these analyses, it is apparent that as the <i>K</i>-values increase at a given input voltage, both the <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio and the sensitivity also increase significantly. Finally, in this paper, we also demonstrated the implementation and simulation of digital logic gates using the proposed NC-MOSFET device, supporting circuit-level design applications.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/5585625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Actuator Fault Detection and Identification Using H-Infinity Filter","authors":"Ndabarushimana Egone, Ma Lei","doi":"10.1049/cds2/3797647","DOIUrl":"https://doi.org/10.1049/cds2/3797647","url":null,"abstract":"<div>\u0000 <p>Open-circuit faults (OCFs) in insulated gate bipolar transistors (IGBTs) within single-phase pulse width modulation (PWM) rectifiers can severely degrade system performance, leading to reduced output voltage, poor power quality, overheating, and safety risks, including electric shocks or fires. Reliable fault detection is critical for maintaining system efficiency and preventing further damage. This study presents an advanced fault detection method based on the H-infinity (H∞) approach, utilizing an extended H∞ filter to monitor system behavior and generate residual signals indicative of faults. The method effectively filters out external disturbances and system noise, minimizing false positives and enhancing detection accuracy. The proposed method was evaluated through hardware-in-the-loop (HIL) simulations that replicated real-world conditions of PWM rectifiers. Results show that the extended H∞ filter successfully detected OCFs with high accuracy and reduced false alarm rates. Performance metrics indicate a significant improvement in detection reliability compared to conventional methods. In conclusion, the H∞-based fault detection method offers a robust solution for real-time monitoring in power electronic systems. It enhances fault detection accuracy, reduces false alarms, and improves the operational safety and reliability of single-phase PWM rectifiers. Integrating this technique into power systems can mitigate risks associated with IGBT failures and ensure optimal performance under varying operational conditions.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/3797647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Deepti, K. Deepa, Albert Alexander Stonier, Geno Peter, A. Anoop, D. Ferlin Deva Shahila, Vivekananda Ganji, Arya Jha
{"title":"Analysis of Leakage Inductance Effect and Loss Calculation of DAB Using Single-Phase Shift Modulation Scheme","authors":"T. Deepti, K. Deepa, Albert Alexander Stonier, Geno Peter, A. Anoop, D. Ferlin Deva Shahila, Vivekananda Ganji, Arya Jha","doi":"10.1049/cds2/3536991","DOIUrl":"https://doi.org/10.1049/cds2/3536991","url":null,"abstract":"<div>\u0000 <p>The swift progression of electric vehicles (EVs) presents significant prospects for the enhanced integration of sustainable energy in the automotive industry. The installation technique and cost-effectiveness of on-board chargers (OBCs) have contributed to their increasing popularity as a feasible option for EVs. Moreover, there exists a growing demand within the automotive sector regarding bidirectional power flow solutions owing to the capacity of EVs to supply electricity to the electrical network. A crucial and integral component of the OBC is the dual active bridge (DAB) (an isolated bidirectional direct current [DC]–DC converter) satisfying the bidirectional power flow. The key aim of this work is to emphasize the essential role of the DAB within the realm of power electronic converters utilized in EVs. This paper introduces an analytical methodology for evaluating power losses and energy efficiency in a single-phase DAB. The validity of this approach is determined through a comparison between the computed energy efficiency and the empirical data obtained from a closed loop PI controlled 2.6 kW DAB model. The research article furthermore presents an analysis of leakage inductance on the efficiency and phase shift saturation in the empirical model. Subsequent comparative study evaluates the key properties of the paper, such as overall efficiency and settling time, across different loads. This inquiry offers valuable insights into the actual performance of these systems by a comparative analysis of simulation findings and real-world data obtained from hardware-based experiments.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/3536991","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Power-Efficient Current-Mode ASK Demodulator for Passive RFID Transponders","authors":"Somayeh Yousefi, Mohsen Jalali","doi":"10.1049/cds2/6056566","DOIUrl":"https://doi.org/10.1049/cds2/6056566","url":null,"abstract":"<div>\u0000 <p>An ultra-low power fully integrated CMOS current-mode amplitude shift keying (ASK) demodulator for radio frequency identification (RFID) transponders is presented. The proposed ASK demodulator performs signal shaping and amplification in the current domain to achieve higher power efficiency. Owing to a DC elimination technique, the employed current amplifier only amplifies the AC content of the envelope signal resulting in a significant reduction of power consumption. A feedforward correction method is also introduced to match the baseline of the amplified envelope signal with the threshold level of the output buffer, preserving the uniformity of data symbols. The proposed ASK demodulator is implemented in a standard 0.18 µm CMOS process consuming about 5.4 µW. A modulation index of 4% and a data rate of 800 Kbps is supported by the proposed demodulator which fully complies with international standards for passive RF communication.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/6056566","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Deepti, K. Deepa, Albert Alexander Stonier, Geno Peter, A. Anoop, Vivekananda Ganji
{"title":"Development and Efficiency Analysis of Dual Active Bridge Converter Employing SiC Devices Using TMS 320F280039","authors":"T. Deepti, K. Deepa, Albert Alexander Stonier, Geno Peter, A. Anoop, Vivekananda Ganji","doi":"10.1049/cds2/6336609","DOIUrl":"https://doi.org/10.1049/cds2/6336609","url":null,"abstract":"<div>\u0000 <p>The utilization of on-board chargers (OBCs) in electric vehicle (EV) has become increasing prevalent due to their configuration and cost-efficiency in the context of installation. Furthermore, the automobile industry is increasingly showing interest in bidirectional power flow because of the EV’s ability to provide energy back to the network. The paper presents an analytical method for designing the crucial elements of dual active bridge (DAB) with single-phase shift (SPS) modulation control. By comparing the estimated energy efficiency characteristics with measurements from a prototype 90-W single-phase DAB converter fitted with silicon carbide (SiC) MOSFETs, the robustness of this approach is exemplified and loss, and efficiency comparison analysis is carried out with conventional switching devices. Furthermore, this study presents a closed-loop voltage controller that effectively regulates the output voltage in the presence of significant variations in both the input line and load conditions. Finally, a comparison analysis is undertaken to evaluate important factors such as overall efficiency and settling time across different load circumstances. This analysis provides substantial perspectives toward the actual functionality of these systems through contrasts of simulation results with hardware-based results from the real world.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/6336609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 2-GHz GaN HEMT Power Amplifier Harmonically Tuned Using a Compact One-Port CRLH Transmission Line","authors":"Shinichi Tanaka, Ryota Mogami, Naoki Iisaka, Kazuhiko Honjo, Ryo Ishikawa","doi":"10.1049/2024/2690713","DOIUrl":"https://doi.org/10.1049/2024/2690713","url":null,"abstract":"<div>\u0000 <p>A compact harmonic tuning network (HTN) using a composite right-/left-handed (CRLH) transmission line (TL) is introduced. The CRLH TL offers purely imaginary harmonic load impedances, as it essentially functions as a one-port circuit at the harmonic frequencies, owing to a harmonics trap filter. In comparison to conventional HTNs based on microstrip line (MSL) or hybrid MSL and CRLH TL technologies, the proposed HTN features remarkable compactness while accommodating various operating classes of amplifiers. As a proof of concept, a 2-GHz 10-W gallium nitride (GaN) high electron mobility transistor (HEMT) power amplifier (PA) was fabricated, demonstrating drain efficiency of 84.6% and power added efficiency (PAE) of 78.4%. The novel HTN is expected to find applications in PAs for transmitter systems, where high efficiency and a minimal circuit footprint are of paramount importance.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2690713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Approximate Multiplier with Encoded Partial Products and Inexact Counter for Joint Photographic Experts Group Compression","authors":"Elham Esmaeili, Nabiollah Shiri","doi":"10.1049/2024/3314001","DOIUrl":"https://doi.org/10.1049/2024/3314001","url":null,"abstract":"<div>\u0000 <p>Approximate computing is commonly employed in applications where accuracy is not crucial and aims to enhance circuit performance when inaccurate results are not challenging. The multipliers are power-hungry, and their approximation has been the target of research, especially by using approximate counters. In this study, a low-power and high-speed approximate 4 : 2 counter is proposed to add partial product (PP) bits. Also, a new partial product generation (PPG) is introduced by inserting errors in Karnaugh’s map to reduce the circuit complexity. The counter and PPG make a new radix-4-based 8 × 8 Booth multiplier, which is synthesized targeting a 32-nm carbon nanotube field-effect transistor (CNTFET) technology to determine the hardware characteristics. Looking at the normalized mean error distance (NMED), the multiplier has a 51.33% power–delay product (PDP) saving and acceptable accuracy. Besides, the multiplier which is configured by the counter and PPG accomplishes a 28.31% savings in the PDP × NMED in comparison with other approximate Booth multipliers. The case study of joint photographic experts group (JPEG) compression is performed, and the proposed multiplier outperforms references by higher quality results along with lower power consumption.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/3314001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthetic Aperture Interferometric Passive Radiometer Imaging to Locate Electromagnetic Leakage From Spacecraft Surface","authors":"Yuting Zhang, Jie Zhang, Yuhan Huang, Nan Dong","doi":"10.1049/2024/6717798","DOIUrl":"https://doi.org/10.1049/2024/6717798","url":null,"abstract":"<div>\u0000 <p>The localization of electromagnetic radiation leakage through cabin gaps is a critical and challenging aspect of electromagnetic compatibility (EMC) design for spacecraft with complex electromagnetic environments. This paper proposes a localization method based on synthetic aperture interferometric passive radiometry imaging. Electromagnetic radiation signals are measured at a certain distance from the spacecraft surface to form visibility samples. A Fourier transform pair between the visibility sample and the corrected brightness temperature for electromagnetic radiation leakage is established. The spacecraft surface electromagnetic leakage location image is obtained through the inverse Fourier transform. A sparse sampling method based on ant colony optimization was proposed to improve testing efficiency. The impacts of various factors, including positional parameters, positioning accuracy of the test antenna, scanning parameters, and measurement receiver amplitude/phase errors on the imaging results are analyzed. Experiments were conducted on a 1 m × 1 m × 1 m cabin with 51 holes on one surface, and the algorithm proposed in this paper was validated to effectively image and locate electromagnetic leakage points at different frequencies. The effectiveness of sparse sampling was also verified, with a localization accuracy of 90.2% and a testing time savings of 81.9%.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6717798","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Majid Farjamipur, Hossein Lotfi, Mohammad Hassan Nikkhah
{"title":"Simultaneous Optimal Allocation of EVCSs and RESs Using an Improved Genetic Method","authors":"Majid Farjamipur, Hossein Lotfi, Mohammad Hassan Nikkhah","doi":"10.1049/2024/4798197","DOIUrl":"https://doi.org/10.1049/2024/4798197","url":null,"abstract":"<div>\u0000 <p>In the last decade, with the development of the electric vehicle industry and their acceptance in human societies, the participation plan of electric vehicles in supplying the load of the network has been taken into consideration. One of the requirements of this plan is the optimal location of the stations for these vehicles in the network so that they play an effective role in the operation of the network. In this regard, along with the construction of charging and discharging stations for electric vehicles, the construction of renewable sources in the network can play a complementary role for these stations. In this paper, the effect of using renewable resources as a supplement for smart charging stations and the placement of these stations to achieve technical and economic goals have been investigated. In order to manage the demand on the side of consumers and even out the load curve, the time of use mechanism as one of the demand response programs has been considered in this study. In this research, the improved nondominant sorting genetic algorithm is proposed to solve the problem, and the results of the proposed method are also compared with the conventional genetic and particle swarm optimization algorithms. All the simulations have been done in the MATLAB software and on the IEEE 33-bus network. Based on the obtained results, after the implementation of the proposed plan in the distribution network, the objective functions of the loss, voltage drop, and the total cost have been reduced by 13.6%, 58.7%, and 54.4%, respectively, compared to the base conditions of the network.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/4798197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent Control of Surgical Robot for Telesurgery: An Application to Smart Healthcare Systems","authors":"Shailu Sachan, Tanmay Shukla, Pankaj Swarnkar, Apsara Adhikari","doi":"10.1049/2024/2119507","DOIUrl":"https://doi.org/10.1049/2024/2119507","url":null,"abstract":"<div>\u0000 <p>Wireless communication network in robotic telesurgery can be a huge advantage to smart healthcare systems that allows the surgeon to perform surgery on remote patients utilizing a surgical robot. It enables the surgical robotic manipulator to replicate the natural hand motions of the surgeon, allowing it to carry out operations with greater acuity and dexterity. This paper addresses the development of an intelligent controller to assure the safe functioning of a telesurgical robotic manipulator. The intelligent optimized, adaptive, and learning-based adaptive neuro-fuzzy fractional order sliding mode control (ANFFOSMC) controller is proposed to attain dexterity and acuity of the surgical manipulator for surgical interventions. The proposed controller for telesurgical system exhibits superior accuracy and performance compared to conventional controllers, as evidenced by reduced root mean square error (RMSE), integral squared error (ISE), and integral absolute error (IAE). The performance of the robot is evaluated using performance indices in the occurrence of uncertainties and external disturbances.</p>\u0000 </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2119507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}