基于h -∞滤波器的执行器故障检测与识别

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ndabarushimana Egone, Ma Lei
{"title":"基于h -∞滤波器的执行器故障检测与识别","authors":"Ndabarushimana Egone,&nbsp;Ma Lei","doi":"10.1049/cds2/3797647","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Open-circuit faults (OCFs) in insulated gate bipolar transistors (IGBTs) within single-phase pulse width modulation (PWM) rectifiers can severely degrade system performance, leading to reduced output voltage, poor power quality, overheating, and safety risks, including electric shocks or fires. Reliable fault detection is critical for maintaining system efficiency and preventing further damage. This study presents an advanced fault detection method based on the H-infinity (H∞) approach, utilizing an extended H∞ filter to monitor system behavior and generate residual signals indicative of faults. The method effectively filters out external disturbances and system noise, minimizing false positives and enhancing detection accuracy. The proposed method was evaluated through hardware-in-the-loop (HIL) simulations that replicated real-world conditions of PWM rectifiers. Results show that the extended H∞ filter successfully detected OCFs with high accuracy and reduced false alarm rates. Performance metrics indicate a significant improvement in detection reliability compared to conventional methods. In conclusion, the H∞-based fault detection method offers a robust solution for real-time monitoring in power electronic systems. It enhances fault detection accuracy, reduces false alarms, and improves the operational safety and reliability of single-phase PWM rectifiers. Integrating this technique into power systems can mitigate risks associated with IGBT failures and ensure optimal performance under varying operational conditions.</p>\n </div>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/3797647","citationCount":"0","resultStr":"{\"title\":\"Actuator Fault Detection and Identification Using H-Infinity Filter\",\"authors\":\"Ndabarushimana Egone,&nbsp;Ma Lei\",\"doi\":\"10.1049/cds2/3797647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Open-circuit faults (OCFs) in insulated gate bipolar transistors (IGBTs) within single-phase pulse width modulation (PWM) rectifiers can severely degrade system performance, leading to reduced output voltage, poor power quality, overheating, and safety risks, including electric shocks or fires. Reliable fault detection is critical for maintaining system efficiency and preventing further damage. This study presents an advanced fault detection method based on the H-infinity (H∞) approach, utilizing an extended H∞ filter to monitor system behavior and generate residual signals indicative of faults. The method effectively filters out external disturbances and system noise, minimizing false positives and enhancing detection accuracy. The proposed method was evaluated through hardware-in-the-loop (HIL) simulations that replicated real-world conditions of PWM rectifiers. Results show that the extended H∞ filter successfully detected OCFs with high accuracy and reduced false alarm rates. Performance metrics indicate a significant improvement in detection reliability compared to conventional methods. In conclusion, the H∞-based fault detection method offers a robust solution for real-time monitoring in power electronic systems. It enhances fault detection accuracy, reduces false alarms, and improves the operational safety and reliability of single-phase PWM rectifiers. Integrating this technique into power systems can mitigate risks associated with IGBT failures and ensure optimal performance under varying operational conditions.</p>\\n </div>\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2/3797647\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cds2/3797647\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2/3797647","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在单相脉宽调制(PWM)整流器中,绝缘栅双极晶体管(igbt)中的开路故障(ocf)会严重降低系统性能,导致输出电压降低、电能质量差、过热以及包括触电或火灾在内的安全风险。可靠的故障检测是维护系统效率和防止进一步损坏的关键。本研究提出了一种基于H∞(H∞)方法的高级故障检测方法,利用扩展的H∞滤波器来监测系统行为并产生指示故障的残差信号。该方法能有效滤除外部干扰和系统噪声,减少误报,提高检测精度。通过模拟PWM整流器实际情况的硬件在环(HIL)仿真对该方法进行了评估。结果表明,扩展的H∞滤波器能够以较高的精度检测ocf,降低了虚警率。性能指标表明,与传统方法相比,检测可靠性有了显著提高。综上所述,基于H∞的故障检测方法为电力电子系统的实时监控提供了一种鲁棒的解决方案。提高了故障检测精度,减少了虚警,提高了单相PWM整流器的运行安全性和可靠性。将该技术集成到电力系统中可以降低与IGBT故障相关的风险,并确保在不同运行条件下的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Actuator Fault Detection and Identification Using H-Infinity Filter

Actuator Fault Detection and Identification Using H-Infinity Filter

Open-circuit faults (OCFs) in insulated gate bipolar transistors (IGBTs) within single-phase pulse width modulation (PWM) rectifiers can severely degrade system performance, leading to reduced output voltage, poor power quality, overheating, and safety risks, including electric shocks or fires. Reliable fault detection is critical for maintaining system efficiency and preventing further damage. This study presents an advanced fault detection method based on the H-infinity (H∞) approach, utilizing an extended H∞ filter to monitor system behavior and generate residual signals indicative of faults. The method effectively filters out external disturbances and system noise, minimizing false positives and enhancing detection accuracy. The proposed method was evaluated through hardware-in-the-loop (HIL) simulations that replicated real-world conditions of PWM rectifiers. Results show that the extended H∞ filter successfully detected OCFs with high accuracy and reduced false alarm rates. Performance metrics indicate a significant improvement in detection reliability compared to conventional methods. In conclusion, the H∞-based fault detection method offers a robust solution for real-time monitoring in power electronic systems. It enhances fault detection accuracy, reduces false alarms, and improves the operational safety and reliability of single-phase PWM rectifiers. Integrating this technique into power systems can mitigate risks associated with IGBT failures and ensure optimal performance under varying operational conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信