Journal of Group Theory最新文献

筛选
英文 中文
Conjugacy class numbers and nilpotent subgroups of finite groups 有限群的共轭类数和零能子群
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-04-12 DOI: 10.1515/jgth-2023-0263
Hongfei Pan, Shuqin Dong
{"title":"Conjugacy class numbers and nilpotent subgroups of finite groups","authors":"Hongfei Pan, Shuqin Dong","doi":"10.1515/jgth-2023-0263","DOIUrl":"https://doi.org/10.1515/jgth-2023-0263","url":null,"abstract":"Let 𝐺 be a finite group, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0001.png\" /> <jats:tex-math>k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> the number of conjugacy classes of 𝐺, and 𝐵 a nilpotent subgroup of 𝐺. In this paper, we prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0002.png\" /> <jats:tex-math>lvert BO_{pi}(G)/O_{pi}(G)rvertleqlvert Grvert/k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝐺 is solvable and that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mfrac> <m:mn>15</m:mn> <m:mn>7</m:mn> </m:mfrac> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0003.png\" /> <jats:tex-math>frac{15}{7}lvert BO_{pi}(G)/O_{pi}(G)rvertleqlvert Grvert/k(G)</jats:t","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"30 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted conjugacy in residually finite groups of finite Prüfer rank 有限普吕弗秩的残余有限群中的扭曲共轭
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-04-08 DOI: 10.1515/jgth-2023-0083
Evgenij Troitsky
{"title":"Twisted conjugacy in residually finite groups of finite Prüfer rank","authors":"Evgenij Troitsky","doi":"10.1515/jgth-2023-0083","DOIUrl":"https://doi.org/10.1515/jgth-2023-0083","url":null,"abstract":"Suppose 𝐺 is a residually finite group of finite upper rank admitting an automorphism 𝜑 with finite Reidemeister number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (the number of 𝜑-twisted conjugacy classes). We prove that such a 𝐺 is soluble-by-finite (in other words, any residually finite group of finite upper rank that is not soluble-by-finite has the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>R</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0002.png\" /> <jats:tex-math>R_{infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula> property). This reduction is the first step in the proof of the second main theorem of the paper: suppose 𝐺 is a residually finite group of finite Prüfer rank and 𝜑 is its automorphism. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (if it is finite) is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of 𝐺, which are fixed points of the dual map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi>φ</m:mi> <m:mo>̂</m:mo> </m:mover> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo stretchy=\"false\">↦</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∘</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0004.png\" /> <jats:tex-math>hat{varphi}colon[rho]mapsto[rhocircvarphi]</jats:tex-math> </jats:alternatives> </jats:inline-formula> (i.e. we prove the TBFT<jats:sub>𝑓</jats:sub>, the finite version of the conjecture about the twisted Burnside–Frobenius theorem, for such groups).","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"49 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On groups with large verbal quotients 关于具有较大言商的群体
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-28 DOI: 10.1515/jgth-2023-0088
Francesca Lisi, Luca Sabatini
{"title":"On groups with large verbal quotients","authors":"Francesca Lisi, Luca Sabatini","doi":"10.1515/jgth-2023-0088","DOIUrl":"https://doi.org/10.1515/jgth-2023-0088","url":null,"abstract":"Suppose that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0001.png\" /&gt; &lt;jats:tex-math&gt;w=w(x_{1},ldots,x_{n})&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is a word, i.e. an element of the free group &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;⟨&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo stretchy=\"false\"&gt;⟩&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0002.png\" /&gt; &lt;jats:tex-math&gt;F=langle x_{1},ldots,x_{n}rangle&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. The verbal subgroup &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0003.png\" /&gt; &lt;jats:tex-math&gt;w(G)&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of a group 𝐺 is the subgroup generated by the set &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo rspace=\"0.278em\" stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo rspace=\"0.278em\"&gt;:&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0004.png\" /&gt; &lt;jats:tex-math&gt;{w(x_{1},ldots,x_{n}):x_{1},ldots,x_{n}in G}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of all 𝑤-values in 𝐺. Following J. González-Sánchez and B. Klopsch, a group 𝐺 is 𝑤-maximal if &lt;jats:inline-formu","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"55 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isomorphisms and commensurability of surface Houghton groups 表面霍顿群的同构性和可通约性
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-20 DOI: 10.1515/jgth-2023-0297
Javier Aramayona, George Domat, Christopher J. Leininger
{"title":"Isomorphisms and commensurability of surface Houghton groups","authors":"Javier Aramayona, George Domat, Christopher J. Leininger","doi":"10.1515/jgth-2023-0297","DOIUrl":"https://doi.org/10.1515/jgth-2023-0297","url":null,"abstract":"We classify surface Houghton groups, as well as their pure subgroups, up to isomorphism, commensurability, and quasi-isometry.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"159 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalization of the Brauer–Fowler theorem 布劳尔-福勒定理的一般化
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-14 DOI: 10.1515/jgth-2024-0041
Saveliy V. Skresanov
{"title":"A generalization of the Brauer–Fowler theorem","authors":"Saveliy V. Skresanov","doi":"10.1515/jgth-2024-0041","DOIUrl":"https://doi.org/10.1515/jgth-2024-0041","url":null,"abstract":"The famous Brauer–Fowler theorem states that the order of a finite simple group can be bounded in terms of the order of the centralizer of an involution. Using the classification of finite simple groups, we generalize this theorem and prove that if a simple locally finite group has an involution which commutes with at most 𝑛 involutions, then the group is finite and its order is bounded in terms of 𝑛 only. This answers a question of Strunkov from the Kourovka notebook.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"126 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cliques in derangement graphs for innately transitive groups 先天迭代群出错图中的小群
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-14 DOI: 10.1515/jgth-2023-0284
Marco Fusari, Andrea Previtali, Pablo Spiga
{"title":"Cliques in derangement graphs for innately transitive groups","authors":"Marco Fusari, Andrea Previtali, Pablo Spiga","doi":"10.1515/jgth-2023-0284","DOIUrl":"https://doi.org/10.1515/jgth-2023-0284","url":null,"abstract":"Given a permutation group 𝐺, the derangement graph of 𝐺 is the Cayley graph with connection set the derangements of 𝐺. The group 𝐺 is said to be innately transitive if 𝐺 has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mi mathvariant=\"double-struck\">N</m:mi> <m:mo stretchy=\"false\">→</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0284_ineq_0001.png\" /> <jats:tex-math>fcolonmathbb{N}tomathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, if 𝐺 is innately transitive of degree 𝑛 and the derangement graph of 𝐺 has no clique of size 𝑘, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0284_ineq_0002.png\" /> <jats:tex-math>nleq f(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Motivation for this work arises from investigations on Erdős–Ko–Rado type theorems for permutation groups.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"11 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups 环形和细面型加西德群中共轭根的唯一性
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-08 DOI: 10.1515/jgth-2023-0268
Owen Garnier
{"title":"Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups","authors":"Owen Garnier","doi":"10.1515/jgth-2023-0268","DOIUrl":"https://doi.org/10.1515/jgth-2023-0268","url":null,"abstract":"We consider a particular class of Garside groups, which we call circular groups. We mainly prove that roots are unique up to conjugacy in circular groups. This allows us to completely classify these groups up to isomorphism. As a consequence, we obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2. We also consider a generalization of circular groups, called hosohedral-type groups. These groups are defined using circular groups, and a procedure called the Δ-product, which we study in generality. We also study the uniqueness of roots up to conjugacy in hosohedral-type groups.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"126 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation zeta function of a family of maximal class groups: Non-exceptional primes 最大类群族的表示zeta函数:非特殊素数
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-07 DOI: 10.1515/jgth-2022-0213
Shannon Ezzat
{"title":"Representation zeta function of a family of maximal class groups: Non-exceptional primes","authors":"Shannon Ezzat","doi":"10.1515/jgth-2022-0213","DOIUrl":"https://doi.org/10.1515/jgth-2022-0213","url":null,"abstract":"We use a constructive method to obtain all but finitely many 𝑝-local representation zeta functions of a family of finitely generated nilpotent groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0001.png\" /> <jats:tex-math>M_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximal nilpotency class. For representation dimensions coprime to all primes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0002.png\" /> <jats:tex-math>p&lt;n</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct all irreducible representations of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0001.png\" /> <jats:tex-math>M_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> by defining a standard form for the matrices of these representations.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"67 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Character degrees of 5-groups of maximal class 最大类 5 群的特征度
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-03-05 DOI: 10.1515/jgth-2023-0103
Lijuan He, Heng Lv, Dongfang Yang
{"title":"Character degrees of 5-groups of maximal class","authors":"Lijuan He, Heng Lv, Dongfang Yang","doi":"10.1515/jgth-2023-0103","DOIUrl":"https://doi.org/10.1515/jgth-2023-0103","url":null,"abstract":"Let 𝐺 be a 5-group of maximal class with major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>/</m:mo> <m:msub> <m:mi>G</m:mi> <m:mn>4</m:mn> </m:msub> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0001.png\" /> <jats:tex-math>G_{1}=C_{G}({G_{2}}/{G_{4}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that the irreducible character degrees of a 5-group 𝐺 of maximal class are almost determined by the irreducible character degrees of the major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0002.png\" /> <jats:tex-math>G_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and show that the set of irreducible character degrees of a 5-group of maximal class is either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mn>3</m:mn> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0003.png\" /> <jats:tex-math>{1,5,5^{3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mi>k</m:mi> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0004.png\" /> <jats:tex-math>{1,5,ldots,5^{k}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0005.png\" /> <jats:tex-math>kgeq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"5 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automorphic word maps and the Amit–Ashurst conjecture 自动字映射和阿米特-阿舒斯特猜想
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-02-15 DOI: 10.1515/jgth-2023-0151
Harish Kishnani, Amit Kulshrestha
{"title":"Automorphic word maps and the Amit–Ashurst conjecture","authors":"Harish Kishnani, Amit Kulshrestha","doi":"10.1515/jgth-2023-0151","DOIUrl":"https://doi.org/10.1515/jgth-2023-0151","url":null,"abstract":"In this article, we address the Amit–Ashurst conjecture on lower bounds of a probability distribution associated to a word on a finite nilpotent group. We obtain an extension of a result of [R. D. Camina, A. Iñiguez and A. Thillaisundaram, Word problems for finite nilpotent groups, <jats:italic>Arch. Math. (Basel)</jats:italic> 115 (2020), 6, 599–609] by providing improved bounds for the case of finite nilpotent groups of class 2 for words in an arbitrary number of variables, and also settle the conjecture in some cases. We achieve this by obtaining words that are identically distributed on a group to a given word. In doing so, we also obtain an improvement of a result of [A. Iñiguez and J. Sangroniz, Words and characters in finite 𝑝-groups, <jats:italic>J. Algebra</jats:italic> 485 (2017), 230–246] using elementary techniques.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":"69 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139757141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信