环形和细面型加西德群中共轭根的唯一性

Pub Date : 2024-03-08 DOI:10.1515/jgth-2023-0268
Owen Garnier
{"title":"环形和细面型加西德群中共轭根的唯一性","authors":"Owen Garnier","doi":"10.1515/jgth-2023-0268","DOIUrl":null,"url":null,"abstract":"We consider a particular class of Garside groups, which we call circular groups. We mainly prove that roots are unique up to conjugacy in circular groups. This allows us to completely classify these groups up to isomorphism. As a consequence, we obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2. We also consider a generalization of circular groups, called hosohedral-type groups. These groups are defined using circular groups, and a procedure called the Δ-product, which we study in generality. We also study the uniqueness of roots up to conjugacy in hosohedral-type groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups\",\"authors\":\"Owen Garnier\",\"doi\":\"10.1515/jgth-2023-0268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a particular class of Garside groups, which we call circular groups. We mainly prove that roots are unique up to conjugacy in circular groups. This allows us to completely classify these groups up to isomorphism. As a consequence, we obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2. We also consider a generalization of circular groups, called hosohedral-type groups. These groups are defined using circular groups, and a procedure called the Δ-product, which we study in generality. We also study the uniqueness of roots up to conjugacy in hosohedral-type groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类特殊的加西德群,称之为循环群。我们主要证明在循环群中,根是唯一的,直到共轭。这使我们能够对这些群进行完全的同构分类。因此,我们得到了在秩为 2 的复辫状群中,根的共轭唯一性。我们还考虑了圆形群的广义化,称为细面体型群。这些群的定义使用了圆形群和一种称为Δ积的程序,我们对其进行了一般性研究。我们还研究了细面型群中共轭根的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups
We consider a particular class of Garside groups, which we call circular groups. We mainly prove that roots are unique up to conjugacy in circular groups. This allows us to completely classify these groups up to isomorphism. As a consequence, we obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2. We also consider a generalization of circular groups, called hosohedral-type groups. These groups are defined using circular groups, and a procedure called the Δ-product, which we study in generality. We also study the uniqueness of roots up to conjugacy in hosohedral-type groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信