Journal of Group Theory最新文献

筛选
英文 中文
On generalized concise words 关于概括性简明词语
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-09-10 DOI: 10.1515/jgth-2024-0148
Costantino Delizia, Michele Gaeta, Carmine Monetta
{"title":"On generalized concise words","authors":"Costantino Delizia, Michele Gaeta, Carmine Monetta","doi":"10.1515/jgth-2024-0148","DOIUrl":"https://doi.org/10.1515/jgth-2024-0148","url":null,"abstract":"The study of verbal subgroups within a group is well known for being an effective tool to obtain structural information about a group. Therefore, conditions that allow the classification of words in a free group are of paramount importance. One of the most studied problems is to establish which words are concise, where a word 𝑤 is said to be concise if the verbal subgroup <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0148_ineq_0001.png\"/> <jats:tex-math>w(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finite in each group 𝐺 in which 𝑤 takes only a finite number of values. The purpose of this article is to present some results, in which a hierarchy among words is introduced, generalizing the concept of concise word.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On 𝜎-permutable subgroups of 𝜎-soluble finite groups 关于𝜎可溶有限群的𝜎可变子群
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-08-27 DOI: 10.1515/jgth-2024-0012
Zhigang Wang, A-Ming Liu, Vasily G. Safonov, Alexander N. Skiba
{"title":"On 𝜎-permutable subgroups of 𝜎-soluble finite groups","authors":"Zhigang Wang, A-Ming Liu, Vasily G. Safonov, Alexander N. Skiba","doi":"10.1515/jgth-2024-0012","DOIUrl":"https://doi.org/10.1515/jgth-2024-0012","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;σ&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;σ&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo fence=\"true\" lspace=\"0em\" rspace=\"0em\"&gt;∣&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0001.png\"/&gt; &lt;jats:tex-math&gt;sigma={sigma_{i}mid iin I}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be some partition of the set of all primes and 𝐺 a finite group. Then 𝐺 is said to be 𝜎-full if 𝐺 has a Hall &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;σ&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0002.png\"/&gt; &lt;jats:tex-math&gt;sigma_{i}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-subgroup for all &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0003.png\"/&gt; &lt;jats:tex-math&gt;iin I&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and 𝜎-primary if 𝐺 is a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;σ&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0002.png\"/&gt; &lt;jats:tex-math&gt;sigma_{i}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-group for some 𝑖. In addition, 𝐺 is 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary and 𝜎-nilpotent if 𝐺 is a direct product of 𝜎-primary groups. We write &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"fraktur\"&gt;N&lt;/m:mi&gt; &lt;m:mi&gt;σ&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0005.png\"/&gt; &lt;jats:tex-math&gt;G^{mathfrak{N}_{sigma}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for the 𝜎-nilpotent residual of 𝐺, which is the intersection of all normal subgroups 𝑁 of 𝐺 with 𝜎-nilpotent &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0006.png\"/&gt; &lt;jats:tex-math&gt;G/N&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. A subgroup 𝐴 of 𝐺 is said to be 𝜎-permutable in 𝐺 p","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The commuting graph of a solvable 𝐴-group 可解𝐴群的换向图
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-08-26 DOI: 10.1515/jgth-2023-0076
Rachel Carleton, Mark L. Lewis
{"title":"The commuting graph of a solvable 𝐴-group","authors":"Rachel Carleton, Mark L. Lewis","doi":"10.1515/jgth-2023-0076","DOIUrl":"https://doi.org/10.1515/jgth-2023-0076","url":null,"abstract":"Let 𝐺 be a finite group. Recall that an 𝐴-group is a group whose Sylow subgroups are all abelian. In this paper, we investigate the upper bound on the diameter of the commuting graph of a solvable 𝐴-group. Assuming that the commuting graph is connected, we show when the derived length of 𝐺 is 2, the diameter of the commuting graph will be at most 4. In the general case, we show that the diameter of the commuting graph will be at most 6. In both cases, examples are provided to show that the upper bound of the commuting graph cannot be improved.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root cycles in Coxeter groups Coxeter 群中的根循环
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-08-26 DOI: 10.1515/jgth-2023-0027
Sarah Hart, Veronica Kelsey, Peter Rowley
{"title":"Root cycles in Coxeter groups","authors":"Sarah Hart, Veronica Kelsey, Peter Rowley","doi":"10.1515/jgth-2023-0027","DOIUrl":"https://doi.org/10.1515/jgth-2023-0027","url":null,"abstract":"For an element 𝑤 of a Coxeter group 𝑊, there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of 𝑊. This paper investigates the interaction between these two features of 𝑤, introducing the notion of the crossing number of 𝑤, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0001.png\"/&gt; &lt;jats:tex-math&gt;kappa(w)&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. Writing &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;c&lt;/m:mi&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;⋯&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;c&lt;/m:mi&gt; &lt;m:mi&gt;r&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0002.png\"/&gt; &lt;jats:tex-math&gt;w=c_{1}cdots c_{r}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; as a product of disjoint cycles, we associate to each cycle &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;c&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/&gt; &lt;jats:tex-math&gt;c_{i}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; a “crossing number” &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi&gt;c&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0004.png\"/&gt; &lt;jats:tex-math&gt;kappa(c_{i})&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, which is the number of positive roots 𝛼 in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;c&lt;/m:mi&gt; &lt;m:mi&gt;i&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/&gt; &lt;jats:tex-math&gt;c_{i}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for which &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;w&lt;/m:mi&gt; &lt;m:mo lspace=\"0.222em\" rspace=\"0.222em\"&gt;⋅&lt;/m:mo&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0006.png\"/&gt; &lt;jats:tex-m","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separability properties of nilpotent ℚ[𝑥]-powered groups II 零势ℚ[𝑥]幂群的可分性特性 II
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-08-05 DOI: 10.1515/jgth-2023-0288
Stephen Majewicz, Marcos Zyman
{"title":"Separability properties of nilpotent ℚ[𝑥]-powered groups II","authors":"Stephen Majewicz, Marcos Zyman","doi":"10.1515/jgth-2023-0288","DOIUrl":"https://doi.org/10.1515/jgth-2023-0288","url":null,"abstract":"In this paper, we study nilpotent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-powered groups that satisfy the following property: for some set of primes 𝜔 in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ω</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0003.png\"/> <jats:tex-math>omega^{prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-isolated <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroup in some family of its <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroups is finite 𝜔-type separable.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Gluck’s conjecture for wreath product type groups 关于花环积类型群的格鲁克猜想
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-08-05 DOI: 10.1515/jgth-2024-0042
Hangyang Meng, Xiuyun Guo
{"title":"On Gluck’s conjecture for wreath product type groups","authors":"Hangyang Meng, Xiuyun Guo","doi":"10.1515/jgth-2024-0042","DOIUrl":"https://doi.org/10.1515/jgth-2024-0042","url":null,"abstract":"A well-known conjecture of Gluck claims that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi mathvariant=\"bold\">F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>b</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0001.png\"/> <jats:tex-math>lvert G:mathbf{F}(G)rvertleq b(G)^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all finite solvable groups 𝐺, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"bold\">F</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0002.png\"/> <jats:tex-math>mathbf{F}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fitting subgroup and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0003.png\"/> <jats:tex-math>b(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the largest degree of a complex irreducible character of 𝐺. In this paper, we prove that Gluck’s conjecture holds for all wreath product type groups of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0004.png\"/> <jats:tex-math>Gwr H_{1}wr H_{2}wrcdotswr H_{r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where 𝐺 is a finite solvable group acting primitively on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">F</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stre","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reflection length at infinity in hyperbolic reflection groups 双曲反射群中无穷远处的反射长度
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-07-25 DOI: 10.1515/jgth-2023-0073
Marco Lotz
{"title":"Reflection length at infinity in hyperbolic reflection groups","authors":"Marco Lotz","doi":"10.1515/jgth-2023-0073","DOIUrl":"https://doi.org/10.1515/jgth-2023-0073","url":null,"abstract":"In a discrete group generated by hyperplane reflections in the 𝑛-dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a direct product of spherical and affine reflection groups, the reflection length is unbounded. The action of the Coxeter group induces a tessellation of the hyperbolic space. After fixing a fundamental domain, there exists a bijection between the tiles and the group elements. We describe certain points in the visual boundary of the 𝑛-dimensional hyperbolic space for which every neighbourhood contains tiles of every reflection length. To prove this, we show that two disjoint hyperplanes in the 𝑛-dimensional hyperbolic space without common boundary points have a unique common perpendicular.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative homology of arithmetic subgroups of SU(3) SU(3) 算术子群的相对同源性
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-07-09 DOI: 10.1515/jgth-2023-0140
Claudio Bravo
{"title":"Relative homology of arithmetic subgroups of SU(3)","authors":"Claudio Bravo","doi":"10.1515/jgth-2023-0140","DOIUrl":"https://doi.org/10.1515/jgth-2023-0140","url":null,"abstract":"Let 𝑘 be a global field of positive characteristic. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0001.png\"/> <jats:tex-math>mathcal{G}=mathrm{SU}(3)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the non-split group scheme defined from an (isotropic) hermitian form in three variables. In this work, we describe, in terms of the Euler–Poincaré characteristic, the relative homology groups of certain arithmetic subgroups 𝐺 of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0002.png\"/> <jats:tex-math>mathcal{G}(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo a representative system 𝔘 of the conjugacy classes of their maximal unipotent subgroups. In other words, we measure how far the homology groups of 𝐺 are from being the coproducts of the corresponding homology groups of the subgroups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"fraktur\">U</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0003.png\"/> <jats:tex-math>Uinmathfrak{U}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homeomorphism types of the Bowditch boundaries of infinite-ended relatively hyperbolic groups 无限端相对双曲群鲍迪奇边界的同构类型
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-07-01 DOI: 10.1515/jgth-2023-0264
Ravi Tomar
{"title":"Homeomorphism types of the Bowditch boundaries of infinite-ended relatively hyperbolic groups","authors":"Ravi Tomar","doi":"10.1515/jgth-2023-0264","DOIUrl":"https://doi.org/10.1515/jgth-2023-0264","url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0001.png\"/> <jats:tex-math>ngeq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∗</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∗</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0002.png\"/> <jats:tex-math>G_{1}=A_{1}astdotsast A_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∗</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∗</m:mo> <m:msub> <m:mi>B</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0003.png\"/> <jats:tex-math>G_{2}=B_{1}astdotsast B_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> where the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0004.png\"/> <jats:tex-math>A_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>’s and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>B</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0005.png\"/> <jats:tex-math>B_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>’s are non-elementary relatively hyperbolic groups. Suppose that, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0264_ineq_0006.png\"/> <jats:tex-math>1leq ileq n</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Bowditch boundary of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On normal subgroups in automorphism groups 论自形群中的正常子群
IF 0.5 3区 数学
Journal of Group Theory Pub Date : 2024-06-28 DOI: 10.1515/jgth-2023-0089
Philip Möller, Olga Varghese
{"title":"On normal subgroups in automorphism groups","authors":"Philip Möller, Olga Varghese","doi":"10.1515/jgth-2023-0089","DOIUrl":"https://doi.org/10.1515/jgth-2023-0089","url":null,"abstract":"We describe the structure of virtually solvable normal subgroups in the automorphism group of a right-angled Artin group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>mathrm{Aut}(A_{Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we prove that a finite normal subgroup in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>mathrm{Aut}(A_{Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most order two and if Γ is not a clique, then any finite normal subgroup in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>mathrm{Aut}(A_{Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is trivial. This property has implications for automatic continuity and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0004.png\"/> <jats:tex-math>C^{ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebras: every algebraic epimorphism <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>φ</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mi>L</m:mi> <m:mo stretchy=\"false\">↠</m:mo> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0005.png\"/> <jats:tex-math>varphicolon Ltwoheadrightarrowmathrm{Aut}(A_{Gamma})</jats:tex-math> </jats:alternatives> </jats:inlin","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信