{"title":"On Gluck’s conjecture for wreath product type groups","authors":"Hangyang Meng, Xiuyun Guo","doi":"10.1515/jgth-2024-0042","DOIUrl":null,"url":null,"abstract":"A well-known conjecture of Gluck claims that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi mathvariant=\"bold\">F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>b</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0001.png\"/> <jats:tex-math>\\lvert G:\\mathbf{F}(G)\\rvert\\leq b(G)^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all finite solvable groups 𝐺, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"bold\">F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0002.png\"/> <jats:tex-math>\\mathbf{F}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Fitting subgroup and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>b</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0003.png\"/> <jats:tex-math>b(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the largest degree of a complex irreducible character of 𝐺. In this paper, we prove that Gluck’s conjecture holds for all wreath product type groups of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">≀</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0004.png\"/> <jats:tex-math>G\\wr H_{1}\\wr H_{2}\\wr\\cdots\\wr H_{r}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where 𝐺 is a finite solvable group acting primitively on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi mathvariant=\"bold\">F</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0005.png\"/> <jats:tex-math>\\mathbf{F}(G)/\\Phi(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and each <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>H</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0042_ineq_0006.png\"/> <jats:tex-math>H_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a solvable primitive permutation group of finite degree.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2024-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A well-known conjecture of Gluck claims that |G:F(G)|≤b(G)2\lvert G:\mathbf{F}(G)\rvert\leq b(G)^{2} for all finite solvable groups 𝐺, where F(G)\mathbf{F}(G) is the Fitting subgroup and b(G)b(G) is the largest degree of a complex irreducible character of 𝐺. In this paper, we prove that Gluck’s conjecture holds for all wreath product type groups of the form G≀H1≀H2≀⋯≀HrG\wr H_{1}\wr H_{2}\wr\cdots\wr H_{r}, where 𝐺 is a finite solvable group acting primitively on F(G)/Φ(G)\mathbf{F}(G)/\Phi(G), and each HiH_{i} is a solvable primitive permutation group of finite degree.
Gluck 的一个著名猜想声称 | G : F ( G ) | ≤ b ( G ) 2 \lvert G:\mathbf{F}(G)\rvert\leq b(G)^{2} 适用于所有有限可解群𝐺,其中 F ( G ) \mathbf{F}(G) 是 Fitting 子群,而 b ( G ) b(G) 是𝐺 的复不可约特征的最大度数。在本文中,我们将证明格鲁克猜想对于所有形式为 G ≀ H 1 ≀ H 2 ⋯ ≀ H r G\wr H_{1}\wr H_{2}\wr\cdots\wr H_{r} 的花环积类型群都成立、其中,𝐺 是有限可解的群,原始地作用于 F ( G ) / Φ ( G ) \mathbf{F}(G)/\Phi(G) , 每个 H i H_{i} 是有限度的可解原始置换群。