Root cycles in Coxeter groups

Pub Date : 2024-08-26 DOI:10.1515/jgth-2023-0027
Sarah Hart, Veronica Kelsey, Peter Rowley
{"title":"Root cycles in Coxeter groups","authors":"Sarah Hart, Veronica Kelsey, Peter Rowley","doi":"10.1515/jgth-2023-0027","DOIUrl":null,"url":null,"abstract":"For an element 𝑤 of a Coxeter group 𝑊, there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of 𝑊. This paper investigates the interaction between these two features of 𝑤, introducing the notion of the crossing number of 𝑤, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0001.png\"/> <jats:tex-math>\\kappa(w)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Writing <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0002.png\"/> <jats:tex-math>w=c_{1}\\cdots c_{r}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as a product of disjoint cycles, we associate to each cycle <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/> <jats:tex-math>c_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> a “crossing number” <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0004.png\"/> <jats:tex-math>\\kappa(c_{i})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is the number of positive roots 𝛼 in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/> <jats:tex-math>c_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">⋅</m:mo> <m:mi>α</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0006.png\"/> <jats:tex-math>w\\cdot\\alpha</jats:tex-math> </jats:alternatives> </jats:inline-formula> is negative. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0007.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the sequence of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0004.png\"/> <jats:tex-math>\\kappa(c_{i})</jats:tex-math> </jats:alternatives> </jats:inline-formula> written in increasing order, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>max</m:mi> <m:mo lspace=\"0.167em\">⁡</m:mo> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0009.png\"/> <jats:tex-math>\\kappa(w)=\\max{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The length of 𝑤 can be retrieved from this sequence, but <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0007.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula> provides much more information. For a conjugacy class 𝑋 of 𝑊, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>min</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∣</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0011.png\"/> <jats:tex-math>\\kappa_{\\min}(X)=\\min\\{\\kappa(w)\\mid w\\in X\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>W</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0012.png\"/> <jats:tex-math>\\kappa(W)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the maximum value of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0013.png\"/> <jats:tex-math>\\kappa_{\\min}</jats:tex-math> </jats:alternatives> </jats:inline-formula> across all conjugacy classes of 𝑊. We call <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0001.png\"/> <jats:tex-math>\\kappa(w)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>W</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0012.png\"/> <jats:tex-math>\\kappa(W)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, the crossing numbers of 𝑤 and 𝑊. Here we determine the crossing numbers of all finite Coxeter groups and of all universal Coxeter groups. We also show, among other things, that for finite irreducible Coxeter groups, if 𝑢 and 𝑣 are two elements of minimal length in the same conjugacy class 𝑋, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0016.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({u})={\\mathrm{Seq}}_{\\kappa}({v})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0017.png\"/> <jats:tex-math>\\kappa_{\\min}(X)=\\kappa(u)=\\kappa(v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an element 𝑤 of a Coxeter group 𝑊, there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of 𝑊. This paper investigates the interaction between these two features of 𝑤, introducing the notion of the crossing number of 𝑤, κ ( w ) \kappa(w) . Writing w = c 1 c r w=c_{1}\cdots c_{r} as a product of disjoint cycles, we associate to each cycle c i c_{i} a “crossing number” κ ( c i ) \kappa(c_{i}) , which is the number of positive roots 𝛼 in c i c_{i} for which w α w\cdot\alpha is negative. Let Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) be the sequence of κ ( c i ) \kappa(c_{i}) written in increasing order, and let κ ( w ) = max Seq κ ( w ) \kappa(w)=\max{\mathrm{Seq}}_{\kappa}({w}) . The length of 𝑤 can be retrieved from this sequence, but Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) provides much more information. For a conjugacy class 𝑋 of 𝑊, let κ min ( X ) = min { κ ( w ) w X } \kappa_{\min}(X)=\min\{\kappa(w)\mid w\in X\} and let κ ( W ) \kappa(W) be the maximum value of κ min \kappa_{\min} across all conjugacy classes of 𝑊. We call κ ( w ) \kappa(w) and κ ( W ) \kappa(W) , respectively, the crossing numbers of 𝑤 and 𝑊. Here we determine the crossing numbers of all finite Coxeter groups and of all universal Coxeter groups. We also show, among other things, that for finite irreducible Coxeter groups, if 𝑢 and 𝑣 are two elements of minimal length in the same conjugacy class 𝑋, then Seq κ ( u ) = Seq κ ( v ) {\mathrm{Seq}}_{\kappa}({u})={\mathrm{Seq}}_{\kappa}({v}) and κ min ( X ) = κ ( u ) = κ ( v ) \kappa_{\min}(X)=\kappa(u)=\kappa(v) .
分享
查看原文
Coxeter 群中的根循环
对于科赛特群 𝑤 的元素𝑤 来说,有两个重要的属性,即它的长度和它在 Φ(即 𝑤 的根系统)上的作用中作为不相交循环的乘积的表达式。本文研究了𝑤 的这两个特征之间的相互作用,引入了𝑤 的交叉数概念,即 κ ( w ) \kappa(w) 。把 w = c 1 ⋯ c r w=c_{1}\cdots c_{r} 写成不相交循环的乘积,我们给每个循环 c i c_{i} 关联一个 "交叉数" κ ( c i ) \kappa(c_{i}) ,它是 w ⋅ α w\cdot\alpha 为负数的 c i c_{i} 中𝛼 的正根的个数。让 Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) 是 κ ( c i ) \kappa(c_{i})按递增顺序写成的序列,让 κ ( w ) = max Seq κ ( w ) \kappa(w)=\max{mathrm{Seq}}_{\kappa}({w})。𝑤的长度可以从这个序列中获取,但是 Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) 提供了更多的信息。对于𝑋 的共轭类,让 κ min ( X ) = min { κ ( w ) ∣ w∈ X }。 \kappa_\min}(X)=\min\{\kappa(w)\mid w\in X\} 并让κ ( W ) \kappa(W)成为κ min \kappa_{min} 在𝑋的所有共轭类中的最大值。我们把 κ ( w ) \kappa(w) 和 κ ( W ) \kappa(W) 分别称为𝑤和 𝑤的交叉数。在这里,我们确定了所有有限柯克赛特群和所有普遍柯克赛特群的交叉数。我们还证明,对于有限不可还原考克西特群,如果 𝑢 和 𝑣 是同一共轭类 𝑋 中长度最小的两个元素、则 Seq κ ( u ) = Seq κ ( v ) {\mathrm{Seq}}_{\kappa}({u})={\mathrm{Seq}}_{\kappa}({v}) κ min ( X ) = κ ( u ) = κ ( v ) \kappa_{\min}(X)=\kappa(u)=\kappa(v) .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信