{"title":"Root cycles in Coxeter groups","authors":"Sarah Hart, Veronica Kelsey, Peter Rowley","doi":"10.1515/jgth-2023-0027","DOIUrl":null,"url":null,"abstract":"For an element 𝑤 of a Coxeter group 𝑊, there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of 𝑊. This paper investigates the interaction between these two features of 𝑤, introducing the notion of the crossing number of 𝑤, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0001.png\"/> <jats:tex-math>\\kappa(w)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Writing <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo></m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>r</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0002.png\"/> <jats:tex-math>w=c_{1}\\cdots c_{r}</jats:tex-math> </jats:alternatives> </jats:inline-formula> as a product of disjoint cycles, we associate to each cycle <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/> <jats:tex-math>c_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> a “crossing number” <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0004.png\"/> <jats:tex-math>\\kappa(c_{i})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is the number of positive roots 𝛼 in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0003.png\"/> <jats:tex-math>c_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">⋅</m:mo> <m:mi>α</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0006.png\"/> <jats:tex-math>w\\cdot\\alpha</jats:tex-math> </jats:alternatives> </jats:inline-formula> is negative. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0007.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the sequence of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>c</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0004.png\"/> <jats:tex-math>\\kappa(c_{i})</jats:tex-math> </jats:alternatives> </jats:inline-formula> written in increasing order, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>max</m:mi> <m:mo lspace=\"0.167em\"></m:mo> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0009.png\"/> <jats:tex-math>\\kappa(w)=\\max{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The length of 𝑤 can be retrieved from this sequence, but <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0007.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({w})</jats:tex-math> </jats:alternatives> </jats:inline-formula> provides much more information. For a conjugacy class 𝑋 of 𝑊, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>min</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∣</m:mo> <m:mi>w</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>X</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0011.png\"/> <jats:tex-math>\\kappa_{\\min}(X)=\\min\\{\\kappa(w)\\mid w\\in X\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>W</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0012.png\"/> <jats:tex-math>\\kappa(W)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the maximum value of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0013.png\"/> <jats:tex-math>\\kappa_{\\min}</jats:tex-math> </jats:alternatives> </jats:inline-formula> across all conjugacy classes of 𝑊. We call <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0001.png\"/> <jats:tex-math>\\kappa(w)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>W</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0012.png\"/> <jats:tex-math>\\kappa(W)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, the crossing numbers of 𝑤 and 𝑊. Here we determine the crossing numbers of all finite Coxeter groups and of all universal Coxeter groups. We also show, among other things, that for finite irreducible Coxeter groups, if 𝑢 and 𝑣 are two elements of minimal length in the same conjugacy class 𝑋, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>Seq</m:mi> <m:mi>κ</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0016.png\"/> <jats:tex-math>{\\mathrm{Seq}}_{\\kappa}({u})={\\mathrm{Seq}}_{\\kappa}({v})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>κ</m:mi> <m:mi>min</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>X</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>κ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0027_ineq_0017.png\"/> <jats:tex-math>\\kappa_{\\min}(X)=\\kappa(u)=\\kappa(v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For an element 𝑤 of a Coxeter group 𝑊, there are two important attributes, namely its length, and its expression as a product of disjoint cycles in its action on Φ, the root system of 𝑊. This paper investigates the interaction between these two features of 𝑤, introducing the notion of the crossing number of 𝑤, κ(w)\kappa(w). Writing w=c1⋯crw=c_{1}\cdots c_{r} as a product of disjoint cycles, we associate to each cycle cic_{i} a “crossing number” κ(ci)\kappa(c_{i}), which is the number of positive roots 𝛼 in cic_{i} for which w⋅αw\cdot\alpha is negative. Let Seqκ(w){\mathrm{Seq}}_{\kappa}({w}) be the sequence of κ(ci)\kappa(c_{i}) written in increasing order, and let κ(w)=maxSeqκ(w)\kappa(w)=\max{\mathrm{Seq}}_{\kappa}({w}). The length of 𝑤 can be retrieved from this sequence, but Seqκ(w){\mathrm{Seq}}_{\kappa}({w}) provides much more information. For a conjugacy class 𝑋 of 𝑊, let κmin(X)=min{κ(w)∣w∈X}\kappa_{\min}(X)=\min\{\kappa(w)\mid w\in X\} and let κ(W)\kappa(W) be the maximum value of κmin\kappa_{\min} across all conjugacy classes of 𝑊. We call κ(w)\kappa(w) and κ(W)\kappa(W), respectively, the crossing numbers of 𝑤 and 𝑊. Here we determine the crossing numbers of all finite Coxeter groups and of all universal Coxeter groups. We also show, among other things, that for finite irreducible Coxeter groups, if 𝑢 and 𝑣 are two elements of minimal length in the same conjugacy class 𝑋, then Seqκ(u)=Seqκ(v){\mathrm{Seq}}_{\kappa}({u})={\mathrm{Seq}}_{\kappa}({v}) and κmin(X)=κ(u)=κ(v)\kappa_{\min}(X)=\kappa(u)=\kappa(v).
对于科赛特群 𝑤 的元素𝑤 来说,有两个重要的属性,即它的长度和它在 Φ(即 𝑤 的根系统)上的作用中作为不相交循环的乘积的表达式。本文研究了𝑤 的这两个特征之间的相互作用,引入了𝑤 的交叉数概念,即 κ ( w ) \kappa(w) 。把 w = c 1 ⋯ c r w=c_{1}\cdots c_{r} 写成不相交循环的乘积,我们给每个循环 c i c_{i} 关联一个 "交叉数" κ ( c i ) \kappa(c_{i}) ,它是 w ⋅ α w\cdot\alpha 为负数的 c i c_{i} 中𝛼 的正根的个数。让 Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) 是 κ ( c i ) \kappa(c_{i})按递增顺序写成的序列,让 κ ( w ) = max Seq κ ( w ) \kappa(w)=\max{mathrm{Seq}}_{\kappa}({w})。𝑤的长度可以从这个序列中获取,但是 Seq κ ( w ) {\mathrm{Seq}}_{\kappa}({w}) 提供了更多的信息。对于𝑋 的共轭类,让 κ min ( X ) = min { κ ( w ) ∣ w∈ X }。 \kappa_\min}(X)=\min\{\kappa(w)\mid w\in X\} 并让κ ( W ) \kappa(W)成为κ min \kappa_{min} 在𝑋的所有共轭类中的最大值。我们把 κ ( w ) \kappa(w) 和 κ ( W ) \kappa(W) 分别称为𝑤和 𝑤的交叉数。在这里,我们确定了所有有限柯克赛特群和所有普遍柯克赛特群的交叉数。我们还证明,对于有限不可还原考克西特群,如果 𝑢 和 𝑣 是同一共轭类 𝑋 中长度最小的两个元素、则 Seq κ ( u ) = Seq κ ( v ) {\mathrm{Seq}}_{\kappa}({u})={\mathrm{Seq}}_{\kappa}({v}) κ min ( X ) = κ ( u ) = κ ( v ) \kappa_{\min}(X)=\kappa(u)=\kappa(v) .