Zhigang Wang, A-Ming Liu, Vasily G. Safonov, Alexander N. Skiba
{"title":"关于𝜎可溶有限群的𝜎可变子群","authors":"Zhigang Wang, A-Ming Liu, Vasily G. Safonov, Alexander N. Skiba","doi":"10.1515/jgth-2024-0012","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo fence=\"true\" lspace=\"0em\" rspace=\"0em\">∣</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>I</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0001.png\"/> <jats:tex-math>\\sigma=\\{\\sigma_{i}\\mid i\\in I\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some partition of the set of all primes and 𝐺 a finite group. Then 𝐺 is said to be 𝜎-full if 𝐺 has a Hall <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0002.png\"/> <jats:tex-math>\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroup for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0003.png\"/> <jats:tex-math>i\\in I</jats:tex-math> </jats:alternatives> </jats:inline-formula> and 𝜎-primary if 𝐺 is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0002.png\"/> <jats:tex-math>\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-group for some 𝑖. In addition, 𝐺 is 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary and 𝜎-nilpotent if 𝐺 is a direct product of 𝜎-primary groups. We write <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\"fraktur\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0005.png\"/> <jats:tex-math>G^{\\mathfrak{N}_{\\sigma}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the 𝜎-nilpotent residual of 𝐺, which is the intersection of all normal subgroups 𝑁 of 𝐺 with 𝜎-nilpotent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0006.png\"/> <jats:tex-math>G/N</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A subgroup 𝐴 of 𝐺 is said to be 𝜎-permutable in 𝐺 provided 𝐺 is 𝜎-full and 𝐴 permutes with all Hall <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0002.png\"/> <jats:tex-math>\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroups 𝐻 of 𝐺 (that is, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>H</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>H</m:mi> <m:mo></m:mo> <m:mi>A</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0008.png\"/> <jats:tex-math>AH=HA</jats:tex-math> </jats:alternatives> </jats:inline-formula>) for all 𝑖. And 𝐴 is 𝜎-subnormal in 𝐺 if there is a subgroup chain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>=</m:mo> <m:msub> <m:mi>A</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>≤</m:mo> <m:msub> <m:mi>A</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>≤</m:mo> <m:mi mathvariant=\"normal\">⋯</m:mi> <m:mo>≤</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0009.png\"/> <jats:tex-math>A=A_{0}\\leq A_{1}\\leq\\cdots\\leq A_{n}=G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo></m:mo> <m:mi mathvariant=\"normal\">⊴</m:mi> <m:mo></m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0010.png\"/> <jats:tex-math>A_{i-1}\\trianglelefteq A_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>/</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0011.png\"/> <jats:tex-math>A_{i}/(A_{i-1})_{A_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is 𝜎-primary for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0012.png\"/> <jats:tex-math>i=1,\\ldots,n</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if 𝐺 is a 𝜎-soluble group, then 𝜎-permutability is a transitive relation in 𝐺 if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\"fraktur\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> <m:mo>∩</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>G</m:mi> </m:msup> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\"fraktur\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> <m:mo>∩</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>G</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0012_ineq_0013.png\"/> <jats:tex-math>G^{\\mathfrak{N}_{\\sigma}}\\cap A^{G}=G^{\\mathfrak{N}_{\\sigma}}\\cap A_{G}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for every 𝜎-subnormal subgroup 𝐴 of 𝐺.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On 𝜎-permutable subgroups of 𝜎-soluble finite groups\",\"authors\":\"Zhigang Wang, A-Ming Liu, Vasily G. Safonov, Alexander N. Skiba\",\"doi\":\"10.1515/jgth-2024-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo fence=\\\"true\\\" lspace=\\\"0em\\\" rspace=\\\"0em\\\">∣</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>I</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0001.png\\\"/> <jats:tex-math>\\\\sigma=\\\\{\\\\sigma_{i}\\\\mid i\\\\in I\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some partition of the set of all primes and 𝐺 a finite group. Then 𝐺 is said to be 𝜎-full if 𝐺 has a Hall <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0002.png\\\"/> <jats:tex-math>\\\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroup for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>I</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0003.png\\\"/> <jats:tex-math>i\\\\in I</jats:tex-math> </jats:alternatives> </jats:inline-formula> and 𝜎-primary if 𝐺 is a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0002.png\\\"/> <jats:tex-math>\\\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-group for some 𝑖. In addition, 𝐺 is 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary and 𝜎-nilpotent if 𝐺 is a direct product of 𝜎-primary groups. We write <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\\\"fraktur\\\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0005.png\\\"/> <jats:tex-math>G^{\\\\mathfrak{N}_{\\\\sigma}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the 𝜎-nilpotent residual of 𝐺, which is the intersection of all normal subgroups 𝑁 of 𝐺 with 𝜎-nilpotent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>G</m:mi> <m:mo>/</m:mo> <m:mi>N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0006.png\\\"/> <jats:tex-math>G/N</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A subgroup 𝐴 of 𝐺 is said to be 𝜎-permutable in 𝐺 provided 𝐺 is 𝜎-full and 𝐴 permutes with all Hall <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>σ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0002.png\\\"/> <jats:tex-math>\\\\sigma_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroups 𝐻 of 𝐺 (that is, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mi>H</m:mi> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>H</m:mi> <m:mo></m:mo> <m:mi>A</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0008.png\\\"/> <jats:tex-math>AH=HA</jats:tex-math> </jats:alternatives> </jats:inline-formula>) for all 𝑖. And 𝐴 is 𝜎-subnormal in 𝐺 if there is a subgroup chain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>A</m:mi> <m:mo>=</m:mo> <m:msub> <m:mi>A</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>≤</m:mo> <m:msub> <m:mi>A</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>≤</m:mo> <m:mi mathvariant=\\\"normal\\\">⋯</m:mi> <m:mo>≤</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>=</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0009.png\\\"/> <jats:tex-math>A=A_{0}\\\\leq A_{1}\\\\leq\\\\cdots\\\\leq A_{n}=G</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo></m:mo> <m:mi mathvariant=\\\"normal\\\">⊴</m:mi> <m:mo></m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0010.png\\\"/> <jats:tex-math>A_{i-1}\\\\trianglelefteq A_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>/</m:mo> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>i</m:mi> </m:msub> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0011.png\\\"/> <jats:tex-math>A_{i}/(A_{i-1})_{A_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is 𝜎-primary for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0012.png\\\"/> <jats:tex-math>i=1,\\\\ldots,n</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that if 𝐺 is a 𝜎-soluble group, then 𝜎-permutability is a transitive relation in 𝐺 if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\\\"fraktur\\\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> <m:mo>∩</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>G</m:mi> </m:msup> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>G</m:mi> <m:msub> <m:mi mathvariant=\\\"fraktur\\\">N</m:mi> <m:mi>σ</m:mi> </m:msub> </m:msup> <m:mo>∩</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi>G</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0012_ineq_0013.png\\\"/> <jats:tex-math>G^{\\\\mathfrak{N}_{\\\\sigma}}\\\\cap A^{G}=G^{\\\\mathfrak{N}_{\\\\sigma}}\\\\cap A_{G}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for every 𝜎-subnormal subgroup 𝐴 of 𝐺.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2024-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2024-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 σ = { σ i ∣ i ∈ I } \is some partition of the set of all primes and 𝐺 a finite group.那么,如果𝐺对所有 i∈I i\in I 都有一个 Hall σ i \sigma_{i} -子群,则称𝐺为𝜎-full;如果𝐺对某个 𝑖来说是一个 σ i \sigma_{i} -群,则称𝐺为𝜎-primary。此外,如果𝐺 的每个主因子都是𝜎-初等群,则𝐺 是𝜎-可溶的;如果𝐺 是𝜎-初等群的直积,则𝐺 是𝜎-无穷群。我们用 G N σ G^{mathfrak{N}_{\sigma} 来表示𝐺的𝜎-零potent 残差,它是𝐺的所有正则子群𝑁 与𝜎-零potent G / N G/N 的交集。如果𝐺是满的,并且𝐺与𝐺的所有霍尔σ i \sigma_{i} -子群𝐻(即 A H = H AH=HA )对于所有𝑖都是包络的,那么𝐺的子群𝐴在𝐺中就被称为是可𝜎包络的。如果存在一个子群链 A = A 0 ≤ A 1 ≤ ⋯ ≤ A n = G A=A_{0}\leq A_{1}\leq A_{1}\cdots\leq A_{n}=G,则𝐴在𝐺中是𝜎-次正态的,这样,要么 A i - 1 ⊴ A i A_{i-1}\trianglelefteq A_{i} 或 A i / ( A i - 1 ) A i A_{i}/(A_{i-1})_{A_{i}} 对于所有 i = 1 、..., n i=1,\ldots,n 。我们证明,如果𝐺是一个𝜎可溶群、那么当且仅当 G N σ ∩ A G = G N σ ∩ A G G^{mathfrak{N}_{\sigma}}\cap A^{G}=G^{mathfrak{N}_{\sigma}}\cap A_{G} 对于每一个𝜎-的子正常子群𝐴。
On 𝜎-permutable subgroups of 𝜎-soluble finite groups
Let σ={σi∣i∈I}\sigma=\{\sigma_{i}\mid i\in I\} be some partition of the set of all primes and 𝐺 a finite group. Then 𝐺 is said to be 𝜎-full if 𝐺 has a Hall σi\sigma_{i}-subgroup for all i∈Ii\in I and 𝜎-primary if 𝐺 is a σi\sigma_{i}-group for some 𝑖. In addition, 𝐺 is 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary and 𝜎-nilpotent if 𝐺 is a direct product of 𝜎-primary groups. We write GNσG^{\mathfrak{N}_{\sigma}} for the 𝜎-nilpotent residual of 𝐺, which is the intersection of all normal subgroups 𝑁 of 𝐺 with 𝜎-nilpotent G/NG/N. A subgroup 𝐴 of 𝐺 is said to be 𝜎-permutable in 𝐺 provided 𝐺 is 𝜎-full and 𝐴 permutes with all Hall σi\sigma_{i}-subgroups 𝐻 of 𝐺 (that is, AH=HAAH=HA) for all 𝑖. And 𝐴 is 𝜎-subnormal in 𝐺 if there is a subgroup chain A=A0≤A1≤⋯≤An=GA=A_{0}\leq A_{1}\leq\cdots\leq A_{n}=G such that either Ai−1⊴AiA_{i-1}\trianglelefteq A_{i} or Ai/(Ai−1)AiA_{i}/(A_{i-1})_{A_{i}} is 𝜎-primary for all i=1,…,ni=1,\ldots,n. We prove that if 𝐺 is a 𝜎-soluble group, then 𝜎-permutability is a transitive relation in 𝐺 if and only if GNσ∩AG=GNσ∩AGG^{\mathfrak{N}_{\sigma}}\cap A^{G}=G^{\mathfrak{N}_{\sigma}}\cap A_{G} for every 𝜎-subnormal subgroup 𝐴 of 𝐺.