On normal subgroups in automorphism groups

Pub Date : 2024-06-28 DOI:10.1515/jgth-2023-0089
Philip Möller, Olga Varghese
{"title":"On normal subgroups in automorphism groups","authors":"Philip Möller, Olga Varghese","doi":"10.1515/jgth-2023-0089","DOIUrl":null,"url":null,"abstract":"We describe the structure of virtually solvable normal subgroups in the automorphism group of a right-angled Artin group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>\\mathrm{Aut}(A_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we prove that a finite normal subgroup in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>\\mathrm{Aut}(A_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most order two and if Γ is not a clique, then any finite normal subgroup in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>\\mathrm{Aut}(A_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is trivial. This property has implications for automatic continuity and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0004.png\"/> <jats:tex-math>C^{\\ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebras: every algebraic epimorphism <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>φ</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mi>L</m:mi> <m:mo stretchy=\"false\">↠</m:mo> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0005.png\"/> <jats:tex-math>\\varphi\\colon L\\twoheadrightarrow\\mathrm{Aut}(A_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> from a locally compact Hausdorff group 𝐿 is continuous if and only if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0006.png\"/> <jats:tex-math>A_{\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is not isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0007.png\"/> <jats:tex-math>\\mathbb{Z}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0008.png\"/> <jats:tex-math>n\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, if Γ is not a join and contains at least two vertices, then the set of invertible elements is dense in the reduced group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0004.png\"/> <jats:tex-math>C^{\\ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>A</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0001.png\"/> <jats:tex-math>\\mathrm{Aut}(A_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain similar results for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>G</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0011.png\"/> <jats:tex-math>\\mathrm{Aut}(G_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>G</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0012.png\"/> <jats:tex-math>G_{\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph product of cyclic groups. Moreover, we give a description of the center of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Aut</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>G</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0089_ineq_0011.png\"/> <jats:tex-math>\\mathrm{Aut}(G_{\\Gamma})</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of the defining graph Γ.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the structure of virtually solvable normal subgroups in the automorphism group of a right-angled Artin group Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma}) . In particular, we prove that a finite normal subgroup in Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma}) has at most order two and if Γ is not a clique, then any finite normal subgroup in Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma}) is trivial. This property has implications for automatic continuity and C C^{\ast} -algebras: every algebraic epimorphism φ : L Aut ( A Γ ) \varphi\colon L\twoheadrightarrow\mathrm{Aut}(A_{\Gamma}) from a locally compact Hausdorff group 𝐿 is continuous if and only if A Γ A_{\Gamma} is not isomorphic to Z n \mathbb{Z}^{n} for any n 1 n\geq 1 . Furthermore, if Γ is not a join and contains at least two vertices, then the set of invertible elements is dense in the reduced group C C^{\ast} -algebra of Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma}) . We obtain similar results for Aut ( G Γ ) \mathrm{Aut}(G_{\Gamma}) , where G Γ G_{\Gamma} is a graph product of cyclic groups. Moreover, we give a description of the center of Aut ( G Γ ) \mathrm{Aut}(G_{\Gamma}) in terms of the defining graph Γ.
分享
查看原文
论自形群中的正常子群
我们描述了直角阿汀群 Aut ( A Γ ) \mathrm{Aut}(A_\{Gamma}) 自变群中的可解正则子群的结构。我们特别证明了 Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma})中的有限正则子群最多有二阶,并且如果 Γ 不是一个簇,那么 Aut ( A Γ ) \mathrm{Aut}(A_{\Gamma})中的任何有限正则子群都是微不足道的。这一性质对自动连续性和 C ∗ C^{\ast} - 算法都有影响:每个代数外显 φ : L ↠ Aut ( A Γ ) \varphi\colon L\twoheadrightarrow\mathrm{Aut}(A_{Gamma}) from a locally compact Hausdorff group 𝐿 is continuous if and only if A Γ A_{Gamma} is not isomorphic to Z n \mathbb{Z}^{n} for any n ≥ 1 n\geq 1.此外,如果 Γ 不是连接且至少包含两个顶点,那么可逆元素集在 Aut ( A Γ ) 的还原群 C∗ C^{\ast} -代数中是密集的。我们对 Aut ( G Γ ) \mathrm{Aut}(G_{Gamma})也得到了类似的结果,其中 G Γ G_{Gamma} 是循环群的图积。此外,我们用定义图形 Γ 来描述 Aut ( G Γ ) \mathrm{Aut}(G_{Gamma})的中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信