SU(3) 算术子群的相对同源性

Pub Date : 2024-07-09 DOI:10.1515/jgth-2023-0140
Claudio Bravo
{"title":"SU(3) 算术子群的相对同源性","authors":"Claudio Bravo","doi":"10.1515/jgth-2023-0140","DOIUrl":null,"url":null,"abstract":"Let 𝑘 be a global field of positive characteristic. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0001.png\"/> <jats:tex-math>\\mathcal{G}=\\mathrm{SU}(3)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the non-split group scheme defined from an (isotropic) hermitian form in three variables. In this work, we describe, in terms of the Euler–Poincaré characteristic, the relative homology groups of certain arithmetic subgroups 𝐺 of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0002.png\"/> <jats:tex-math>\\mathcal{G}(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo a representative system 𝔘 of the conjugacy classes of their maximal unipotent subgroups. In other words, we measure how far the homology groups of 𝐺 are from being the coproducts of the corresponding homology groups of the subgroups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"fraktur\">U</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0140_ineq_0003.png\"/> <jats:tex-math>U\\in\\mathfrak{U}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative homology of arithmetic subgroups of SU(3)\",\"authors\":\"Claudio Bravo\",\"doi\":\"10.1515/jgth-2023-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝑘 be a global field of positive characteristic. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">G</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mn>3</m:mn> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0140_ineq_0001.png\\\"/> <jats:tex-math>\\\\mathcal{G}=\\\\mathrm{SU}(3)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the non-split group scheme defined from an (isotropic) hermitian form in three variables. In this work, we describe, in terms of the Euler–Poincaré characteristic, the relative homology groups of certain arithmetic subgroups 𝐺 of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">G</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0140_ineq_0002.png\\\"/> <jats:tex-math>\\\\mathcal{G}(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo a representative system 𝔘 of the conjugacy classes of their maximal unipotent subgroups. In other words, we measure how far the homology groups of 𝐺 are from being the coproducts of the corresponding homology groups of the subgroups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"fraktur\\\">U</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0140_ineq_0003.png\\\"/> <jats:tex-math>U\\\\in\\\\mathfrak{U}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 𝑘 是一个正特征的全局域。让 G = SU ( 3 ) (mathcal{G}=\mathrm{SU}(3) 是由三变量(各向同性)赫米特形式定义的非分裂群方案。在这项工作中,我们用欧拉-庞加莱特征来描述 G ( k ) \mathcal{G}(k)的某些算术子群𝐺 modulo a representative system 𝔘 of the conjugacy classes of their maximal unipotent subgroups 的相对同调群。换句话说,我们测量的是𝐺 的同调群距离子群 U∈U\in\mathfrak{U} 的相应同调群的共轭类有多远。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relative homology of arithmetic subgroups of SU(3)
Let 𝑘 be a global field of positive characteristic. Let G = SU ( 3 ) \mathcal{G}=\mathrm{SU}(3) be the non-split group scheme defined from an (isotropic) hermitian form in three variables. In this work, we describe, in terms of the Euler–Poincaré characteristic, the relative homology groups of certain arithmetic subgroups 𝐺 of G ( k ) \mathcal{G}(k) modulo a representative system 𝔘 of the conjugacy classes of their maximal unipotent subgroups. In other words, we measure how far the homology groups of 𝐺 are from being the coproducts of the corresponding homology groups of the subgroups U U U\in\mathfrak{U} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信