Reflection length at infinity in hyperbolic reflection groups

Pub Date : 2024-07-25 DOI:10.1515/jgth-2023-0073
Marco Lotz
{"title":"Reflection length at infinity in hyperbolic reflection groups","authors":"Marco Lotz","doi":"10.1515/jgth-2023-0073","DOIUrl":null,"url":null,"abstract":"In a discrete group generated by hyperplane reflections in the 𝑛-dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a direct product of spherical and affine reflection groups, the reflection length is unbounded. The action of the Coxeter group induces a tessellation of the hyperbolic space. After fixing a fundamental domain, there exists a bijection between the tiles and the group elements. We describe certain points in the visual boundary of the 𝑛-dimensional hyperbolic space for which every neighbourhood contains tiles of every reflection length. To prove this, we show that two disjoint hyperplanes in the 𝑛-dimensional hyperbolic space without common boundary points have a unique common perpendicular.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a discrete group generated by hyperplane reflections in the 𝑛-dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a direct product of spherical and affine reflection groups, the reflection length is unbounded. The action of the Coxeter group induces a tessellation of the hyperbolic space. After fixing a fundamental domain, there exists a bijection between the tiles and the group elements. We describe certain points in the visual boundary of the 𝑛-dimensional hyperbolic space for which every neighbourhood contains tiles of every reflection length. To prove this, we show that two disjoint hyperplanes in the 𝑛-dimensional hyperbolic space without common boundary points have a unique common perpendicular.
分享
查看原文
双曲反射群中无穷远处的反射长度
在由𝑛维双曲空间中的超平面反射生成的离散群中,元素的反射长度是群中足以因数化该元素的超平面反射的最小数目。对于以这种方式产生的柯克赛特群,如果没有分裂成球面反射群和仿射反射群的直接乘积,反射长度就是无界的。考斯特群的作用会诱导双曲空间的网格划分。在固定了一个基本域之后,方块和群元素之间存在着双射关系。我们描述了𝑛维双曲空间视觉边界中的某些点,这些点的每个邻域都包含每个反射长度的瓦片。为了证明这一点,我们证明了𝑛维双曲空间中没有共同边界点的两个互不相交的双曲面具有唯一的共同垂线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信