Separability properties of nilpotent ℚ[𝑥]-powered groups II

Pub Date : 2024-08-05 DOI:10.1515/jgth-2023-0288
Stephen Majewicz, Marcos Zyman
{"title":"Separability properties of nilpotent ℚ[𝑥]-powered groups II","authors":"Stephen Majewicz, Marcos Zyman","doi":"10.1515/jgth-2023-0288","DOIUrl":null,"url":null,"abstract":"In this paper, we study nilpotent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>\\mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-powered groups that satisfy the following property: for some set of primes 𝜔 in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>\\mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ω</m:mi> <m:mo>′</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0003.png\"/> <jats:tex-math>\\omega^{\\prime}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-isolated <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>\\mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroup in some family of its <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0288_ineq_0001.png\"/> <jats:tex-math>\\mathbb{Q}[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subgroups is finite 𝜔-type separable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study nilpotent Q [ x ] \mathbb{Q}[x] -powered groups that satisfy the following property: for some set of primes 𝜔 in Q [ x ] \mathbb{Q}[x] , every ω \omega^{\prime} -isolated Q [ x ] \mathbb{Q}[x] -subgroup in some family of its Q [ x ] \mathbb{Q}[x] -subgroups is finite 𝜔-type separable.
分享
查看原文
零势ℚ[𝑥]幂群的可分性特性 II
本文研究满足以下性质的无幂 Q [ x ] \mathbb{Q}[x] 有幂群:对于 Q [ x ] \mathbb{Q}[x]中的某个prime 細集,其 Q [ x ] \mathbb{Q}[x]-子群的某个族中的每Ω ′ \omega^{\prime} -隔离的 Q [ x ] \mathbb{Q}[x]-子群都是有限娀型可分离的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信