{"title":"有限群的共轭类数和零能子群","authors":"Hongfei Pan, Shuqin Dong","doi":"10.1515/jgth-2023-0263","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a finite group, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0001.png\" /> <jats:tex-math>k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> the number of conjugacy classes of 𝐺, and 𝐵 a nilpotent subgroup of 𝐺. In this paper, we prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0002.png\" /> <jats:tex-math>\\lvert BO_{\\pi}(G)/O_{\\pi}(G)\\rvert\\leq\\lvert G\\rvert/k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝐺 is solvable and that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mfrac> <m:mn>15</m:mn> <m:mn>7</m:mn> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0003.png\" /> <jats:tex-math>\\frac{15}{7}\\lvert BO_{\\pi}(G)/O_{\\pi}(G)\\rvert\\leq\\lvert G\\rvert/k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝐺 is nonsolvable, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>π</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>π</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0004.png\" /> <jats:tex-math>\\pi=\\pi(B)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of prime divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0263_ineq_0005.png\" /> <jats:tex-math>\\lvert B\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Both bounds are best possible.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugacy class numbers and nilpotent subgroups of finite groups\",\"authors\":\"Hongfei Pan, Shuqin Dong\",\"doi\":\"10.1515/jgth-2023-0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝐺 be a finite group, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0263_ineq_0001.png\\\" /> <jats:tex-math>k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> the number of conjugacy classes of 𝐺, and 𝐵 a nilpotent subgroup of 𝐺. In this paper, we prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0263_ineq_0002.png\\\" /> <jats:tex-math>\\\\lvert BO_{\\\\pi}(G)/O_{\\\\pi}(G)\\\\rvert\\\\leq\\\\lvert G\\\\rvert/k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝐺 is solvable and that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mfrac> <m:mn>15</m:mn> <m:mn>7</m:mn> </m:mfrac> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>/</m:mo> <m:msub> <m:mi>O</m:mi> <m:mi>π</m:mi> </m:msub> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mo>/</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0263_ineq_0003.png\\\" /> <jats:tex-math>\\\\frac{15}{7}\\\\lvert BO_{\\\\pi}(G)/O_{\\\\pi}(G)\\\\rvert\\\\leq\\\\lvert G\\\\rvert/k(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝐺 is nonsolvable, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>π</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>π</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0263_ineq_0004.png\\\" /> <jats:tex-math>\\\\pi=\\\\pi(B)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the set of prime divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0263_ineq_0005.png\\\" /> <jats:tex-math>\\\\lvert B\\\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Both bounds are best possible.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设𝐺 是一个有限群,k ( G ) k(G) 是𝐺 的共轭类数,𝐵 是𝐺 的一个无穷子群。在本文中我们证明,如果𝐺 是可解的,则 | B O π ( G ) / O π ( G ) | ≤ | G | / k ( G ) \lvert BO_{\pi}(G)/O_\{pi}(G)\rvert\leq\lvert G\rvert/k(G) ,而且 15 7 | B O π ( G ) / O π ( G ) | ≤ | G | / k ( G ) \frac{15}{7}\lvert BO_{\pi}(G)/O_{\pi}(G)\rvert\leqlvert G\rvert/k(G) if 𝐺 is nonsolvable、其中 π = π ( B ) \pi=\pi(B) 是 | B |\lvert B\rvert 的素除数集。这两个边界都是可能的最佳边界。
Conjugacy class numbers and nilpotent subgroups of finite groups
Let 𝐺 be a finite group, k(G)k(G) the number of conjugacy classes of 𝐺, and 𝐵 a nilpotent subgroup of 𝐺. In this paper, we prove that |BOπ(G)/Oπ(G)|≤|G|/k(G)\lvert BO_{\pi}(G)/O_{\pi}(G)\rvert\leq\lvert G\rvert/k(G) if 𝐺 is solvable and that 157|BOπ(G)/Oπ(G)|≤|G|/k(G)\frac{15}{7}\lvert BO_{\pi}(G)/O_{\pi}(G)\rvert\leq\lvert G\rvert/k(G) if 𝐺 is nonsolvable, where π=π(B)\pi=\pi(B) is the set of prime divisors of |B|\lvert B\rvert. Both bounds are best possible.