Representation zeta function of a family of maximal class groups: Non-exceptional primes

Pub Date : 2024-03-07 DOI:10.1515/jgth-2022-0213
Shannon Ezzat
{"title":"Representation zeta function of a family of maximal class groups: Non-exceptional primes","authors":"Shannon Ezzat","doi":"10.1515/jgth-2022-0213","DOIUrl":null,"url":null,"abstract":"We use a constructive method to obtain all but finitely many 𝑝-local representation zeta functions of a family of finitely generated nilpotent groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0001.png\" /> <jats:tex-math>M_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with maximal nilpotency class. For representation dimensions coprime to all primes <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0002.png\" /> <jats:tex-math>p&lt;n</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct all irreducible representations of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>M</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0213_ineq_0001.png\" /> <jats:tex-math>M_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> by defining a standard form for the matrices of these representations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a constructive method to obtain all but finitely many 𝑝-local representation zeta functions of a family of finitely generated nilpotent groups M n M_{n} with maximal nilpotency class. For representation dimensions coprime to all primes p < n p<n , we construct all irreducible representations of M n M_{n} by defining a standard form for the matrices of these representations.
分享
查看原文
最大类群族的表示zeta函数:非特殊素数
我们用一种构造方法来获得具有最大无幂级数的有限生成无幂群 M n M_{n} 族的所有𝑝局部表示 zeta 函数。对于与所有素数 p < n p<n 共价的表示维数,我们通过定义这些表示的矩阵的标准形式来构造 M n M_{n} 的所有不可还原表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信