{"title":"Twisted conjugacy in residually finite groups of finite Prüfer rank","authors":"Evgenij Troitsky","doi":"10.1515/jgth-2023-0083","DOIUrl":null,"url":null,"abstract":"Suppose 𝐺 is a residually finite group of finite upper rank admitting an automorphism 𝜑 with finite Reidemeister number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(\\varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (the number of 𝜑-twisted conjugacy classes). We prove that such a 𝐺 is soluble-by-finite (in other words, any residually finite group of finite upper rank that is not soluble-by-finite has the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>R</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0002.png\" /> <jats:tex-math>R_{\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula> property). This reduction is the first step in the proof of the second main theorem of the paper: suppose 𝐺 is a residually finite group of finite Prüfer rank and 𝜑 is its automorphism. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(\\varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (if it is finite) is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of 𝐺, which are fixed points of the dual map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi>φ</m:mi> <m:mo>̂</m:mo> </m:mover> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo stretchy=\"false\">↦</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∘</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0004.png\" /> <jats:tex-math>\\hat{\\varphi}\\colon[\\rho]\\mapsto[\\rho\\circ\\varphi]</jats:tex-math> </jats:alternatives> </jats:inline-formula> (i.e. we prove the TBFT<jats:sub>𝑓</jats:sub>, the finite version of the conjecture about the twisted Burnside–Frobenius theorem, for such groups).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose 𝐺 is a residually finite group of finite upper rank admitting an automorphism 𝜑 with finite Reidemeister number R(φ)R(\varphi) (the number of 𝜑-twisted conjugacy classes). We prove that such a 𝐺 is soluble-by-finite (in other words, any residually finite group of finite upper rank that is not soluble-by-finite has the R∞R_{\infty} property). This reduction is the first step in the proof of the second main theorem of the paper: suppose 𝐺 is a residually finite group of finite Prüfer rank and 𝜑 is its automorphism. Then R(φ)R(\varphi) (if it is finite) is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of 𝐺, which are fixed points of the dual map φ̂:[ρ]↦[ρ∘φ]\hat{\varphi}\colon[\rho]\mapsto[\rho\circ\varphi] (i.e. we prove the TBFT𝑓, the finite version of the conjecture about the twisted Burnside–Frobenius theorem, for such groups).