Twisted conjugacy in residually finite groups of finite Prüfer rank

Pub Date : 2024-04-08 DOI:10.1515/jgth-2023-0083
Evgenij Troitsky
{"title":"Twisted conjugacy in residually finite groups of finite Prüfer rank","authors":"Evgenij Troitsky","doi":"10.1515/jgth-2023-0083","DOIUrl":null,"url":null,"abstract":"Suppose 𝐺 is a residually finite group of finite upper rank admitting an automorphism 𝜑 with finite Reidemeister number <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(\\varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (the number of 𝜑-twisted conjugacy classes). We prove that such a 𝐺 is soluble-by-finite (in other words, any residually finite group of finite upper rank that is not soluble-by-finite has the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>R</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0002.png\" /> <jats:tex-math>R_{\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula> property). This reduction is the first step in the proof of the second main theorem of the paper: suppose 𝐺 is a residually finite group of finite Prüfer rank and 𝜑 is its automorphism. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>R</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>φ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0001.png\" /> <jats:tex-math>R(\\varphi)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (if it is finite) is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of 𝐺, which are fixed points of the dual map <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi>φ</m:mi> <m:mo>̂</m:mo> </m:mover> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>ρ</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo stretchy=\"false\">↦</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">∘</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0083_ineq_0004.png\" /> <jats:tex-math>\\hat{\\varphi}\\colon[\\rho]\\mapsto[\\rho\\circ\\varphi]</jats:tex-math> </jats:alternatives> </jats:inline-formula> (i.e. we prove the TBFT<jats:sub>𝑓</jats:sub>, the finite version of the conjecture about the twisted Burnside–Frobenius theorem, for such groups).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose 𝐺 is a residually finite group of finite upper rank admitting an automorphism 𝜑 with finite Reidemeister number R ( φ ) R(\varphi) (the number of 𝜑-twisted conjugacy classes). We prove that such a 𝐺 is soluble-by-finite (in other words, any residually finite group of finite upper rank that is not soluble-by-finite has the R R_{\infty} property). This reduction is the first step in the proof of the second main theorem of the paper: suppose 𝐺 is a residually finite group of finite Prüfer rank and 𝜑 is its automorphism. Then R ( φ ) R(\varphi) (if it is finite) is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of 𝐺, which are fixed points of the dual map φ ̂ : [ ρ ] [ ρ φ ] \hat{\varphi}\colon[\rho]\mapsto[\rho\circ\varphi] (i.e. we prove the TBFT𝑓, the finite version of the conjecture about the twisted Burnside–Frobenius theorem, for such groups).
分享
查看原文
有限普吕弗秩的残余有限群中的扭曲共轭
假设𝐺是一个有限上秩的残余有限群,它容许一个具有有限雷德梅斯特数 R ( φ ) R(\varphi)(𝜑扭曲共轭类的数)的自形𝜑。我们证明,这样的𝐺是可逐无限溶的(换句话说,任何不具有可逐无限溶性的有限上秩的残余有限群都具有 R ∞ R_{infty} 性质)。这一还原是本文第二个主要定理证明的第一步:假设𝐺 是一个有限普吕费秩的残余有限群,𝜑 是它的自变量。那么 R ( φ ) R(\varphi)(如果它是有限的)等于𝐺 的有限维不可还原单元表示的等价类的数量,这些等价类是对偶映射 φ ̂ : [ ρ ] ↦ [ ρ ∘ φ ] \hat{\varphi}\colon[\rho]\mapsto[\rho\circ\varphi] 的定点(即,我们证明了 TBFT 的等价类的数量)。也就是说,我们为这类群证明了 TBFT𝑓,即关于扭曲伯恩赛德-弗罗贝尼斯定理的猜想的有限版本)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信