先天迭代群出错图中的小群

Pub Date : 2024-03-14 DOI:10.1515/jgth-2023-0284
Marco Fusari, Andrea Previtali, Pablo Spiga
{"title":"先天迭代群出错图中的小群","authors":"Marco Fusari, Andrea Previtali, Pablo Spiga","doi":"10.1515/jgth-2023-0284","DOIUrl":null,"url":null,"abstract":"Given a permutation group 𝐺, the derangement graph of 𝐺 is the Cayley graph with connection set the derangements of 𝐺. The group 𝐺 is said to be innately transitive if 𝐺 has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mi mathvariant=\"double-struck\">N</m:mi> <m:mo stretchy=\"false\">→</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0284_ineq_0001.png\" /> <jats:tex-math>f\\colon\\mathbb{N}\\to\\mathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, if 𝐺 is innately transitive of degree 𝑛 and the derangement graph of 𝐺 has no clique of size 𝑘, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0284_ineq_0002.png\" /> <jats:tex-math>n\\leq f(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Motivation for this work arises from investigations on Erdős–Ko–Rado type theorems for permutation groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cliques in derangement graphs for innately transitive groups\",\"authors\":\"Marco Fusari, Andrea Previtali, Pablo Spiga\",\"doi\":\"10.1515/jgth-2023-0284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a permutation group 𝐺, the derangement graph of 𝐺 is the Cayley graph with connection set the derangements of 𝐺. The group 𝐺 is said to be innately transitive if 𝐺 has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo lspace=\\\"0.278em\\\" rspace=\\\"0.278em\\\">:</m:mo> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">N</m:mi> <m:mo stretchy=\\\"false\\\">→</m:mo> <m:mi mathvariant=\\\"double-struck\\\">N</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0284_ineq_0001.png\\\" /> <jats:tex-math>f\\\\colon\\\\mathbb{N}\\\\to\\\\mathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, if 𝐺 is innately transitive of degree 𝑛 and the derangement graph of 𝐺 has no clique of size 𝑘, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>k</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0284_ineq_0002.png\\\" /> <jats:tex-math>n\\\\leq f(k)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Motivation for this work arises from investigations on Erdős–Ko–Rado type theorems for permutation groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个置换群𝐺,𝐺的derangement图就是连接集为𝐺的derangements的Cayley图。如果𝐺有一个传递的最小正子群,则称𝐺群为先天传递群。显然,每个基元群都是先天传递群。我们证明,除了无穷系列的明确例外之外,还存在一个函数 f : N → N fcolon\mathbb{N}\to\mathbb{N} ,使得如果𝐺 是阶为 𝑛 的先天传递性的,并且𝐺 的错乱图没有大小为 𝑘 的簇,那么 n ≤ f ( k ) n\leq f(k) 。这项工作的动机来自于对置换群的厄尔多斯-柯-拉多类型定理的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cliques in derangement graphs for innately transitive groups
Given a permutation group 𝐺, the derangement graph of 𝐺 is the Cayley graph with connection set the derangements of 𝐺. The group 𝐺 is said to be innately transitive if 𝐺 has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function f : N N f\colon\mathbb{N}\to\mathbb{N} such that, if 𝐺 is innately transitive of degree 𝑛 and the derangement graph of 𝐺 has no clique of size 𝑘, then n f ( k ) n\leq f(k) . Motivation for this work arises from investigations on Erdős–Ko–Rado type theorems for permutation groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信