{"title":"On groups with large verbal quotients","authors":"Francesca Lisi, Luca Sabatini","doi":"10.1515/jgth-2023-0088","DOIUrl":null,"url":null,"abstract":"Suppose that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0001.png\" /> <jats:tex-math>w=w(x_{1},\\ldots,x_{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a word, i.e. an element of the free group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>F</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">⟨</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">⟩</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0002.png\" /> <jats:tex-math>F=\\langle x_{1},\\ldots,x_{n}\\rangle</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The verbal subgroup <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0003.png\" /> <jats:tex-math>w(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a group 𝐺 is the subgroup generated by the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo rspace=\"0.278em\" stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0004.png\" /> <jats:tex-math>\\{w(x_{1},\\ldots,x_{n}):x_{1},\\ldots,x_{n}\\in G\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of all 𝑤-values in 𝐺. Following J. González-Sánchez and B. Klopsch, a group 𝐺 is 𝑤-maximal if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>H</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi>w</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo><</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi>w</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0005.png\" /> <jats:tex-math>\\lvert H:w(H)\\rvert<\\lvert G:w(G)\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula> for every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>H</m:mi> <m:mo><</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0006.png\" /> <jats:tex-math>H<G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give new results on 𝑤-maximal groups, and study the weaker condition in which the previous inequality is not strict. Some applications are given: for example, if a finite group has a solvable (resp. nilpotent) section of size 𝑛, then it has a solvable (resp. nilpotent) subgroup of size at least 𝑛.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose that w=w(x1,…,xn)w=w(x_{1},\ldots,x_{n}) is a word, i.e. an element of the free group F=⟨x1,…,xn⟩F=\langle x_{1},\ldots,x_{n}\rangle. The verbal subgroup w(G)w(G) of a group 𝐺 is the subgroup generated by the set {w(x1,…,xn):x1,…,xn∈G}\{w(x_{1},\ldots,x_{n}):x_{1},\ldots,x_{n}\in G\} of all 𝑤-values in 𝐺. Following J. González-Sánchez and B. Klopsch, a group 𝐺 is 𝑤-maximal if |H:w(H)|<|G:w(G)|\lvert H:w(H)\rvert<\lvert G:w(G)\rvert for every H<GH<G. In this paper, we give new results on 𝑤-maximal groups, and study the weaker condition in which the previous inequality is not strict. Some applications are given: for example, if a finite group has a solvable (resp. nilpotent) section of size 𝑛, then it has a solvable (resp. nilpotent) subgroup of size at least 𝑛.
假设 w = w ( x 1 , ... , x n ) w=w(x_{1},\ldots,x_{n}) 是一个词,即自由群 F = ⟨ x 1 , ... , x n ⟩ F=\langle x_{1},\ldots,x_{n}\rangle 的一个元素。群𝐺的言语子群 w ( G ) w(G) 是由集合 { w ( x 1 , ... , x n ) : x 1 , ... , x n∈ G } 产生的子群。 \{w(x_{1},\ldots,x_{n}):x_{1},\ldots,x_{n}在 G\} 中的𝑤值。按照冈萨雷斯-桑切斯(J. González-Sánchez )和克劳普施(B. Klopsch)的观点,如果| H : w ( H ) | < | G : w ( G ) | \lvert H:w(H)\rvert<\lvert G:w(G)\rvert for every H < G H<G,那么群𝐺是𝑤-最大的。本文给出了关于𝑤-最大群的新结果,并研究了前述不等式不严格的较弱条件。本文给出了一些应用:例如,如果一个有限群有一个大小为 𝑛 的可解(或无势)部分,那么它就有一个大小至少为 𝑛 的可解(或无势)子群。