On groups with large verbal quotients

Pub Date : 2024-03-28 DOI:10.1515/jgth-2023-0088
Francesca Lisi, Luca Sabatini
{"title":"On groups with large verbal quotients","authors":"Francesca Lisi, Luca Sabatini","doi":"10.1515/jgth-2023-0088","DOIUrl":null,"url":null,"abstract":"Suppose that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0001.png\" /> <jats:tex-math>w=w(x_{1},\\ldots,x_{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a word, i.e. an element of the free group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>F</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">⟨</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo stretchy=\"false\">⟩</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0002.png\" /> <jats:tex-math>F=\\langle x_{1},\\ldots,x_{n}\\rangle</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The verbal subgroup <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0003.png\" /> <jats:tex-math>w(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a group 𝐺 is the subgroup generated by the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>w</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo rspace=\"0.278em\" stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo rspace=\"0.278em\">:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0004.png\" /> <jats:tex-math>\\{w(x_{1},\\ldots,x_{n}):x_{1},\\ldots,x_{n}\\in G\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of all 𝑤-values in 𝐺. Following J. González-Sánchez and B. Klopsch, a group 𝐺 is 𝑤-maximal if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>H</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi>w</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo lspace=\"0.278em\" rspace=\"0.278em\">:</m:mo> <m:mi>w</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0005.png\" /> <jats:tex-math>\\lvert H:w(H)\\rvert&lt;\\lvert G:w(G)\\rvert</jats:tex-math> </jats:alternatives> </jats:inline-formula> for every <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>H</m:mi> <m:mo>&lt;</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0088_ineq_0006.png\" /> <jats:tex-math>H&lt;G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give new results on 𝑤-maximal groups, and study the weaker condition in which the previous inequality is not strict. Some applications are given: for example, if a finite group has a solvable (resp. nilpotent) section of size 𝑛, then it has a solvable (resp. nilpotent) subgroup of size at least 𝑛.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that w = w ( x 1 , , x n ) w=w(x_{1},\ldots,x_{n}) is a word, i.e. an element of the free group F = x 1 , , x n F=\langle x_{1},\ldots,x_{n}\rangle . The verbal subgroup w ( G ) w(G) of a group 𝐺 is the subgroup generated by the set { w ( x 1 , , x n ) : x 1 , , x n G } \{w(x_{1},\ldots,x_{n}):x_{1},\ldots,x_{n}\in G\} of all 𝑤-values in 𝐺. Following J. González-Sánchez and B. Klopsch, a group 𝐺 is 𝑤-maximal if | H : w ( H ) | < | G : w ( G ) | \lvert H:w(H)\rvert<\lvert G:w(G)\rvert for every H < G H<G . In this paper, we give new results on 𝑤-maximal groups, and study the weaker condition in which the previous inequality is not strict. Some applications are given: for example, if a finite group has a solvable (resp. nilpotent) section of size 𝑛, then it has a solvable (resp. nilpotent) subgroup of size at least 𝑛.
分享
查看原文
关于具有较大言商的群体
假设 w = w ( x 1 , ... , x n ) w=w(x_{1},\ldots,x_{n}) 是一个词,即自由群 F = ⟨ x 1 , ... , x n ⟩ F=\langle x_{1},\ldots,x_{n}\rangle 的一个元素。群𝐺的言语子群 w ( G ) w(G) 是由集合 { w ( x 1 , ... , x n ) : x 1 , ... , x n∈ G } 产生的子群。 \{w(x_{1},\ldots,x_{n}):x_{1},\ldots,x_{n}在 G\} 中的𝑤值。按照冈萨雷斯-桑切斯(J. González-Sánchez )和克劳普施(B. Klopsch)的观点,如果| H : w ( H ) | < | G : w ( G ) | \lvert H:w(H)\rvert<\lvert G:w(G)\rvert for every H < G H<G,那么群𝐺是𝑤-最大的。本文给出了关于𝑤-最大群的新结果,并研究了前述不等式不严格的较弱条件。本文给出了一些应用:例如,如果一个有限群有一个大小为 𝑛 的可解(或无势)部分,那么它就有一个大小至少为 𝑛 的可解(或无势)子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信