最大类 5 群的特征度

Pub Date : 2024-03-05 DOI:10.1515/jgth-2023-0103
Lijuan He, Heng Lv, Dongfang Yang
{"title":"最大类 5 群的特征度","authors":"Lijuan He, Heng Lv, Dongfang Yang","doi":"10.1515/jgth-2023-0103","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a 5-group of maximal class with major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>/</m:mo> <m:msub> <m:mi>G</m:mi> <m:mn>4</m:mn> </m:msub> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0001.png\" /> <jats:tex-math>G_{1}=C_{G}({G_{2}}/{G_{4}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that the irreducible character degrees of a 5-group 𝐺 of maximal class are almost determined by the irreducible character degrees of the major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0002.png\" /> <jats:tex-math>G_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and show that the set of irreducible character degrees of a 5-group of maximal class is either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mn>3</m:mn> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0003.png\" /> <jats:tex-math>\\{1,5,5^{3}\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mi>k</m:mi> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0004.png\" /> <jats:tex-math>\\{1,5,\\ldots,5^{k}\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0103_ineq_0005.png\" /> <jats:tex-math>k\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character degrees of 5-groups of maximal class\",\"authors\":\"Lijuan He, Heng Lv, Dongfang Yang\",\"doi\":\"10.1515/jgth-2023-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝐺 be a 5-group of maximal class with major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>G</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>/</m:mo> <m:msub> <m:mi>G</m:mi> <m:mn>4</m:mn> </m:msub> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0103_ineq_0001.png\\\" /> <jats:tex-math>G_{1}=C_{G}({G_{2}}/{G_{4}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we prove that the irreducible character degrees of a 5-group 𝐺 of maximal class are almost determined by the irreducible character degrees of the major centralizer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>G</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0103_ineq_0002.png\\\" /> <jats:tex-math>G_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and show that the set of irreducible character degrees of a 5-group of maximal class is either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mn>3</m:mn> </m:msup> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0103_ineq_0003.png\\\" /> <jats:tex-math>\\\\{1,5,5^{3}\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>5</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msup> <m:mn>5</m:mn> <m:mi>k</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0103_ineq_0004.png\\\" /> <jats:tex-math>\\\\{1,5,\\\\ldots,5^{k}\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2023-0103_ineq_0005.png\\\" /> <jats:tex-math>k\\\\geq 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设𝐺是最大类的 5 群,其主要中心子 G 1 = C G ( G 2 / G 4 ) G_{1}=C_{G}({G_{2}}/{G_{4}}) 。本文证明了最大类 5 群𝐺 的不可还原特征度几乎由主要中心子 G 1 G_{1} 的不可还原特征度决定,并证明了最大类 5 群的不可还原特征度集合要么是 { 1 , 5 , 5 3 },要么是 { 1 , 5 , 5 3 }。 \{1,5,5^{3}\} 或者 { 1 , 5 , ... , 5 k }。 \k ≥ 1 k\geq 1 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Character degrees of 5-groups of maximal class
Let 𝐺 be a 5-group of maximal class with major centralizer G 1 = C G ( G 2 / G 4 ) G_{1}=C_{G}({G_{2}}/{G_{4}}) . In this paper, we prove that the irreducible character degrees of a 5-group 𝐺 of maximal class are almost determined by the irreducible character degrees of the major centralizer G 1 G_{1} and show that the set of irreducible character degrees of a 5-group of maximal class is either { 1 , 5 , 5 3 } \{1,5,5^{3}\} or { 1 , 5 , , 5 k } \{1,5,\ldots,5^{k}\} with k 1 k\geq 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信