Nature Reviews Electrical Engineering最新文献

筛选
英文 中文
Solving the problem of hiring in STEM 解决科学、技术、工程和数学领域的招聘问题
Nature Reviews Electrical Engineering Pub Date : 2024-05-10 DOI: 10.1038/s44287-024-00056-3
Mario Lanza, Naomi Godfrey, Victor Zhirnov
{"title":"Solving the problem of hiring in STEM","authors":"Mario Lanza, Naomi Godfrey, Victor Zhirnov","doi":"10.1038/s44287-024-00056-3","DOIUrl":"10.1038/s44287-024-00056-3","url":null,"abstract":"The way in which researchers, scientists and engineers apply for jobs is very inefficient. Creating free online databases of candidates with filtering, ranking and video features could help to maximize reach and identify the most suitable person for each job offer much faster.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 6","pages":"352-353"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT 用于物联网的磁电微机电系统和纳米机电系统
Nature Reviews Electrical Engineering Pub Date : 2024-05-07 DOI: 10.1038/s44287-024-00044-7
Bin Luo, A. R. Will-Cole, Cunzheng Dong, Yifan He, Xiaxin Liu, Hwaider Lin, Rui Huang, Xiaoling Shi, Michael McConney, Michael Page, Mohan Sanghadasa, Ramamoorthy Ramesh, Nian X. Sun
{"title":"Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT","authors":"Bin Luo, A. R. Will-Cole, Cunzheng Dong, Yifan He, Xiaxin Liu, Hwaider Lin, Rui Huang, Xiaoling Shi, Michael McConney, Michael Page, Mohan Sanghadasa, Ramamoorthy Ramesh, Nian X. Sun","doi":"10.1038/s44287-024-00044-7","DOIUrl":"10.1038/s44287-024-00044-7","url":null,"abstract":"The internet of things (IoT) has revolutionized society by creating a network of interconnected devices with sensors, processing ability and software for data exchange. However, the expansion of IoT places undue strain on energy resources. Thus, the development of low-power components is critical. Moreover, the demand for IoT has opened new markets for wearable technologies, necessitating innovations towards miniaturization. This rapid growth introduces further challenges in communication and environmental adaptability. Magnetoelectric (ME) microelectromechanical and nanoelectromechanical systems (M/NEMS) introduce unparalleled properties to reshape the IoT landscape. ME M/NEMS enable a 100,000× reduction in wavelength, resulting in reduced size and weight, and provide multifunctionality, such as simultaneous sensing, data transmission and wireless power transfer. With renewed interest in ME M/NEMS platforms, several disruptive technologies have emerged ranging from ultra-compact radiofrequency front-ends to quantum sensing, computing and communication networks. This Review delves into ME materials, ME composites and ME M/NEMS for IoT functions, including logic memory; magnetic sensing; wireless power transfer; ultra-compact antennas; power, radiofrequency and microwave electronics; and communication systems. Magnetoelectric (ME) microelectromechanical and nanoelectromechanical systems (M/NEMS) are vital for addressing the challenges of the internet of things (IoT) networks in size, energy efficiency and communication. This Review delves into ME materials and M/NEMS for IoT applications, such as sensing and communication technologies.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"317-334"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00044-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous interference-avoiding machine-to-machine communications 自主规避干扰的机对机通信
Nature Reviews Electrical Engineering Pub Date : 2024-05-02 DOI: 10.1038/s44287-024-00058-1
Lishu Wu
{"title":"Autonomous interference-avoiding machine-to-machine communications","authors":"Lishu Wu","doi":"10.1038/s44287-024-00058-1","DOIUrl":"10.1038/s44287-024-00058-1","url":null,"abstract":"An article in IEEE Journal on Selected Areas in Communications proposes algorithmic solutions to dynamically optimize MIMO waveforms to minimize or eliminate interference in autonomous machine-to-machine communications.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"285-285"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An electrocorticography-based speech decoder for neural speech prostheses 基于皮层电图的神经语音义肢语音解码器
Nature Reviews Electrical Engineering Pub Date : 2024-05-01 DOI: 10.1038/s44287-024-00054-5
Silvia Conti
{"title":"An electrocorticography-based speech decoder for neural speech prostheses","authors":"Silvia Conti","doi":"10.1038/s44287-024-00054-5","DOIUrl":"10.1038/s44287-024-00054-5","url":null,"abstract":"An article in Nature Machine Intelligence presents a neural signal-based speech decoding framework comprising interchangeable architectures for the electrocorticography decoder and a differentiable speech synthesizer.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"284-284"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining quantum and AI for the next superpower 将量子与人工智能相结合,打造下一个超级大国
Nature Reviews Electrical Engineering Pub Date : 2024-04-30 DOI: 10.1038/s44287-024-00051-8
Martina Gschwendtner, Henning Soller, Sheila Zingg
{"title":"Combining quantum and AI for the next superpower","authors":"Martina Gschwendtner, Henning Soller, Sheila Zingg","doi":"10.1038/s44287-024-00051-8","DOIUrl":"10.1038/s44287-024-00051-8","url":null,"abstract":"Quantum computing can benefit from the advancements made in artificial intelligence (AI) holistically across the tech stack — AI may even unlock completely new ways of using quantum computers. Simultaneously, AI can benefit from quantum computing leveraging the expected future compute and memory power.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 6","pages":"350-351"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transistor engineering based on 2D materials in the post-silicon era 后硅时代基于二维材料的晶体管工程技术
Nature Reviews Electrical Engineering Pub Date : 2024-04-30 DOI: 10.1038/s44287-024-00045-6
Senfeng Zeng, Chunsen Liu, Peng Zhou
{"title":"Transistor engineering based on 2D materials in the post-silicon era","authors":"Senfeng Zeng, Chunsen Liu, Peng Zhou","doi":"10.1038/s44287-024-00045-6","DOIUrl":"10.1038/s44287-024-00045-6","url":null,"abstract":"The miniaturization of metal–oxide–semiconductor field-effect transistors (MOSFETs) has been the driving force behind the development of integrated circuits over the past 60 years; however, owing to short channel effect, reducing the gate length of MOSFETs to sub-10 nm represents a fundamental challenge. Two-dimensional materials (2DMs) with atomic scale thicknesses and non-dangling bonds interface enable sub-10 nm scale length, making them suitable candidates for advanced tech nodes beyond sub-3 nm. Although the performance metrics of a single 2DMs transistor have equalled or surpassed those of silicon, leaving no doubt about the potential of 2DMs at the laboratory level, the way of moving 2DMs from ‘lab to fab’ remains unclear. In this Review, we analyse the similarities and differences between 2DMs MOSFETs and silicon MOSFETs in the integrated circuits engineering process; we present potential solutions for channel, contact and dielectric engineering using 2DM to address the scaling challenges faced by a silicon-based device at the advanced tech node. Finally, we summarize the challenges in translating the performance of individual 2DMs devices into large-scale integrated circuits, including large-scale and stable transfer technology, high-quality material synthesis with controllable layers. Once these technical issues are properly solved, 2DMs can take full advantage of their properties at a farther scaling. This Review systematically compares 2DMs and silicon metal–oxide–semiconductor field-effect transistors technologies in the integrated circuits engineering process and presents potential solutions for channel, contact and dielectric engineering using 2DM to address the scaling challenges faced by a silicon-based device at the advanced tech node.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"335-348"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00045-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D integration of 2D electronics 二维电子器件的三维集成
Nature Reviews Electrical Engineering Pub Date : 2024-04-25 DOI: 10.1038/s44287-024-00038-5
Darsith Jayachandran, Najam U Sakib, Saptarshi Das
{"title":"3D integration of 2D electronics","authors":"Darsith Jayachandran, Najam U Sakib, Saptarshi Das","doi":"10.1038/s44287-024-00038-5","DOIUrl":"10.1038/s44287-024-00038-5","url":null,"abstract":"The adoption of three-dimensional (3D) integration has revolutionized NAND flash memory technology, and a similar transformative potential exists for logic circuits, by stacking transistors into the third dimension. This pivotal shift towards 3D integration of logic arrives on the heels of substantial improvements in silicon device structures and their subsequent scaling in size and performance. Yet, advanced scaling requires ultrathin semiconducting channels, which are difficult to achieve using silicon. In this context, field-effect transistors based on two-dimensional (2D) semiconductors have drawn notable attention owing to their atomically thin nature and impressive performance milestones. In addition, 2D materials offer a broader spectrum of functionalities — such as optical, chemical and biological sensing — that extends their utility beyond simple ‘more Moore’ dimensional scaling and enables the development of ‘more than Moore’ technologies. Thus, 3D integration of 2D electronics could bring us unanticipated discoveries, leading to sustainable and energy-efficient computing systems. In this Review, we explore the progress, challenges and future opportunities for 3D integration of 2D electronics. Since the most advanced nodes in silicon are reaching the limits of planar integration, 2D materials could help to advance the semiconductor industry. With the potential for use in multifunctional chips, 2D materials offer combined logic, memory and sensing in integrated 3D chips.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"300-316"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00038-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memristor-based hardware accelerators for artificial intelligence 基于 Memristor 的人工智能硬件加速器
Nature Reviews Electrical Engineering Pub Date : 2024-04-23 DOI: 10.1038/s44287-024-00037-6
Yi Huang, Takashi Ando, Abu Sebastian, Meng-Fan Chang, J. Joshua Yang, Qiangfei Xia
{"title":"Memristor-based hardware accelerators for artificial intelligence","authors":"Yi Huang, Takashi Ando, Abu Sebastian, Meng-Fan Chang, J. Joshua Yang, Qiangfei Xia","doi":"10.1038/s44287-024-00037-6","DOIUrl":"10.1038/s44287-024-00037-6","url":null,"abstract":"Satisfying the rapid evolution of artificial intelligence (AI) algorithms requires exponential growth in computing resources, which, in turn, presents huge challenges for deploying AI models on hardware. Memristor-based hardware accelerators provide a promising solution to the energy efficiency and latency issues in large AI model deployments. The non-volatility of memristive devices facilitates in-memory computing, in which computing occurs within memory cells where data are stored. This approach eliminates the constant data shuttling between the processing and memory units found in the von Neumann architecture, resulting in substantial time and energy savings. The recent surge of research and development in this field indicates a pivotal transition of memristor technology from proof-of-concept demonstrations to commercial products that accelerate AI models across various applications. In this Review, we survey the latest progress in memristive crossbar arrays, peripheral circuits, architectures, hardware–software co-designs and system implementations for memristor-based hardware accelerators. We discuss how these research efforts bridge the gap between memristive devices and energy-efficient accelerators for AI. Finally, we summarize the key remaining issues and propose potential pathways to future hardware accelerators with low latency and high energy efficiency, emphasizing the technology scale-up and commercialization for large-scale AI applications. This Review summarizes latest advancements in memristor-based hardware accelerators, an energy-efficient solution for computing-intensive artificial intelligence algorithms, covering crossbar arrays, peripheral circuits, architectures and software–hardware co-designs. It analyses challenges and pathways for the transition of memristor technology to commercial products.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"286-299"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medical artificial intelligence should do no harm 医疗人工智能不应造成伤害
Nature Reviews Electrical Engineering Pub Date : 2024-04-12 DOI: 10.1038/s44287-024-00049-2
Melanie E. Moses, Sonia M. Gipson Rankin
{"title":"Medical artificial intelligence should do no harm","authors":"Melanie E. Moses, Sonia M. Gipson Rankin","doi":"10.1038/s44287-024-00049-2","DOIUrl":"10.1038/s44287-024-00049-2","url":null,"abstract":"Bias and distrust in medicine have been perpetuated by the misuse of medical equations, algorithms and devices. Artificial intelligence (AI) can exacerbate these problems. However, AI also has potential to detect, mitigate and remedy the harmful effects of bias to build trust and improve healthcare for everyone.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 5","pages":"280-281"},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting women in tech 促进科技界妇女的发展
Nature Reviews Electrical Engineering Pub Date : 2024-04-09 DOI: 10.1038/s44287-024-00046-5
{"title":"Promoting women in tech","authors":"","doi":"10.1038/s44287-024-00046-5","DOIUrl":"10.1038/s44287-024-00046-5","url":null,"abstract":"In the spirit of promoting gender equality, Sony, in partnership with Nature, has launched the ‘Sony Women in Technology Award’ to recognize and celebrate the remarkable women spearheading advancements in STEM.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 4","pages":"209-209"},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00046-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信