Nature Reviews Electrical Engineering最新文献

筛选
英文 中文
Mitigating interference within satellite megaconstellations 减轻卫星巨型恒星内的干扰
Nature Reviews Electrical Engineering Pub Date : 2024-09-02 DOI: 10.1038/s44287-024-00097-8
Lishu Wu
{"title":"Mitigating interference within satellite megaconstellations","authors":"Lishu Wu","doi":"10.1038/s44287-024-00097-8","DOIUrl":"10.1038/s44287-024-00097-8","url":null,"abstract":"An article in IEEE Journal on Selected Areas in Communications presents a cooperative framework that integrates satellite routing and frequency assignment to avoid self-interference in large satellite constellations.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System technology co-optimization for advanced integration 系统技术共同优化,实现先进集成
Nature Reviews Electrical Engineering Pub Date : 2024-09-02 DOI: 10.1038/s44287-024-00078-x
Saptadeep Pal, Arindam Mallik, Puneet Gupta
{"title":"System technology co-optimization for advanced integration","authors":"Saptadeep Pal, Arindam Mallik, Puneet Gupta","doi":"10.1038/s44287-024-00078-x","DOIUrl":"10.1038/s44287-024-00078-x","url":null,"abstract":"Advanced integration and packaging will drive the scaling of computing systems in the next decade. Diversity in performance, cost and scale of the emerging systems implies that system technology co-optimization (STCO) would be essential to develop these integration technologies for future systems. Such STCO would need to comprehend not only integration technology, circuits, architectures and software but also their interactions with the power delivery, cooling and system costs. In this Review, we present a perspective on what would be needed from these STCO approaches with exemplar case studies covering the current state of the art and the future outlook. This Review discusses system technology co-optimization across the technology–hardware–software stack to guide broader research and development efforts towards the realization of future heterogeneously integrated computing systems.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memristors on ‘edge of chaos’ 处于 "混乱边缘 "的晶体管
Nature Reviews Electrical Engineering Pub Date : 2024-08-27 DOI: 10.1038/s44287-024-00082-1
Leon O. Chua
{"title":"Memristors on ‘edge of chaos’","authors":"Leon O. Chua","doi":"10.1038/s44287-024-00082-1","DOIUrl":"10.1038/s44287-024-00082-1","url":null,"abstract":"Rather than echoing the vision and perspectives proffered by numerous previous publications, this Review focuses on the recent resolution of four unsolved classic problems — Galvani’s ‘irritability’, the Hodgkin–Huxley ‘all-or-none’ mystery, the Turing instability and the Smale paradox — the oldest dating back 243 years to Galvani in 1781. Unlike advances reported previously, which tend to be ephemeral, our resolution of these problems is timeless, because they are a manifestation of a new law of nature, called the ‘principle of local activity’, which, within a certain relatively small parameter space, could harbour a physical state dubbed the ‘edge of chaos’. In this Review, we provide an explicit formula for calculating, via matrix algebra, the precise parameter range where a nonlinear device, or system, is locally active or operating on the edge of chaos. Unlike numerous unsuccessful attempts by luminaries, such as Boltzmann’s assay for decreasing entropy, Schrödinger’s futile search for negentropy, Prigogine’s quest for the ‘instability of the homogeneous’ and Gell-Mann’s musing on ‘amplification of fluctuations’, the principle of local activity provides an explicit formula to identify the parameter space where the edge of chaos reigns supreme. This Review resolves the age-old problems of Galvani’s irritability, the Hodgkin–Huxley ‘all-or-none’ mystery, the Turing instability and the Smale paradox, by applying the findings in 2023 that memristors operating on the ‘edge of chaos’ can model the nonlinear dynamics of these problems, complementing the second law of thermodynamics.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00082-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote distance printing through acoustic holograms 通过声全息图进行远程打印
Nature Reviews Electrical Engineering Pub Date : 2024-08-23 DOI: 10.1038/s44287-024-00095-w
Silvia Conti
{"title":"Remote distance printing through acoustic holograms","authors":"Silvia Conti","doi":"10.1038/s44287-024-00095-w","DOIUrl":"10.1038/s44287-024-00095-w","url":null,"abstract":"An article in Nature Communications introduces the use of acoustic holograms in direct remote printing.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials innovation and electrical engineering in X-ray detection X 射线探测中的材料创新和电气工程
Nature Reviews Electrical Engineering Pub Date : 2024-08-22 DOI: 10.1038/s44287-024-00086-x
Bo Hou, Qiushui Chen, Luying Yi, Paul Sellin, Hong-Tao Sun, Liang Jie Wong, Xiaogang Liu
{"title":"Materials innovation and electrical engineering in X-ray detection","authors":"Bo Hou, Qiushui Chen, Luying Yi, Paul Sellin, Hong-Tao Sun, Liang Jie Wong, Xiaogang Liu","doi":"10.1038/s44287-024-00086-x","DOIUrl":"10.1038/s44287-024-00086-x","url":null,"abstract":"X-ray detection is critical for applications in medical diagnosis, industrial inspection, security checks, scientific inquiry and space exploration. Recent advances in materials science, electronics, manufacturing and artificial intelligence have greatly propelled the field forward. In this Review we examine fundamental principles and recent breakthroughs in X-ray detection and imaging technologies, with a focus on the interplay between electrical engineering techniques and X-ray-responsive materials. We highlight two primary approaches: semiconductor-based direct detection and scintillator-based indirect detection. We then discuss innovations such as photon-counting detectors and heterojunction phototransistors and emphasize the critical contributions of electrical engineering in the development of these cutting-edge detectors. Subsequently, we provide an overview of X-ray detection applications, ranging from biomedical imaging and resonant X-ray techniques for material analysis to nanometre-resolution circuit imaging. Finally, the Review summarizes future research directions, which encompass 3D and 4D X-ray imaging sensors, multispectral X-ray imaging and artificial intelligence-assisted medical image diagnosis. This Review examines fundamental principles and recent breakthroughs in X-ray detection and imaging technologies, with a focus on the interplay between electrical engineering techniques and materials science.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of organic photovoltaics towards 20% efficiency 有机光伏技术向 20% 效率迈进
Nature Reviews Electrical Engineering Pub Date : 2024-08-21 DOI: 10.1038/s44287-024-00080-3
Lei Zhu, Ming Zhang, Zichun Zhou, Wenkai Zhong, Tianyu Hao, Shengjie Xu, Rui Zeng, Jiaxing Zhuang, Xiaonan Xue, Hao Jing, Yongming Zhang, Feng Liu
{"title":"Progress of organic photovoltaics towards 20% efficiency","authors":"Lei Zhu, Ming Zhang, Zichun Zhou, Wenkai Zhong, Tianyu Hao, Shengjie Xu, Rui Zeng, Jiaxing Zhuang, Xiaonan Xue, Hao Jing, Yongming Zhang, Feng Liu","doi":"10.1038/s44287-024-00080-3","DOIUrl":"10.1038/s44287-024-00080-3","url":null,"abstract":"Organic photovoltaic (OPV) technology is flexible, lightweight, semitransparent and ecofriendly, but it has historically suffered from low power conversion efficiency (PCE). However, since 2015, the materials design and PCE of OPV devices have been markedly optimized, and there is now an increasing understanding of OPV optoelectronic processes and blending morphology within the bulk heterojunction framework. In this Review, we survey OPV technology, discussing progress in enhancing the PCE and in understanding the relationship between structure and performance. This progress includes the development of emerging OPV materials and techniques for manipulation and characterization of thin-film morphology. Furthermore, we address the practical application issues ahead of OPV technology, showcasing strategies for improving device stability, fabricating large-area modules and realizing device encapsulation. Finally, we highlight future research directions, including the use of machine learning for material design and synthesis, device fabrication optimization, and prediction and optimization of device performance. Organic photovoltaics are flexible, lightweight and widely applicable, but they face commercialization challenges owing to stability and fabrication issues. This Review explores progress and technological bottlenecks in material innovation, morphology control, device stability and large-scale module fabrication for commercial use.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards transparent superconductor electronics 迈向透明超导体电子学
Nature Reviews Electrical Engineering Pub Date : 2024-08-19 DOI: 10.1038/s44287-024-00092-z
Ali Aliev, Mikhail Belogolovskii
{"title":"Towards transparent superconductor electronics","authors":"Ali Aliev, Mikhail Belogolovskii","doi":"10.1038/s44287-024-00092-z","DOIUrl":"10.1038/s44287-024-00092-z","url":null,"abstract":"Further progress in quantum technologies will require the hybridization of superconducting and photonic platforms. Transparent superconducting oxides would be an ideal solution to avoid substantial losses caused by photon absorption of the superconducting components. Here we present design principles for such materials and discuss the foreseeable prospects of transparent superconductor electronics.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
6G: the catalyst for artificial general intelligence 6G:人工通用智能的催化剂
Nature Reviews Electrical Engineering Pub Date : 2024-08-09 DOI: 10.1038/s44287-024-00090-1
Emilio Calvanese Strinati
{"title":"6G: the catalyst for artificial general intelligence","authors":"Emilio Calvanese Strinati","doi":"10.1038/s44287-024-00090-1","DOIUrl":"10.1038/s44287-024-00090-1","url":null,"abstract":"6G might integrate 5G and AI to merge physical, cyber and sapience spaces, transforming network interactions and enhancing AI-driven decision-making and automation. The semantic approach to communication will train AI while selectively informing on goal achievement, moving towards artificial general intelligence, presenting new challenges and opportunities.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired electronics for intelligent soft robots 用于智能软机器人的生物启发电子技术
Nature Reviews Electrical Engineering Pub Date : 2024-08-05 DOI: 10.1038/s44287-024-00081-2
Junhyuk Bang, Seok Hwan Choi, Kyung Rok Pyun, Yeongju Jung, Sangwoo Hong, Dohyung Kim, Youngseok Lee, Daeyeon Won, Seongmin Jeong, Wooseop Shin, Seung Hwan Ko
{"title":"Bioinspired electronics for intelligent soft robots","authors":"Junhyuk Bang, Seok Hwan Choi, Kyung Rok Pyun, Yeongju Jung, Sangwoo Hong, Dohyung Kim, Youngseok Lee, Daeyeon Won, Seongmin Jeong, Wooseop Shin, Seung Hwan Ko","doi":"10.1038/s44287-024-00081-2","DOIUrl":"10.1038/s44287-024-00081-2","url":null,"abstract":"Soft robots, capable of safe interaction with delicate objects through their flexibility and compliance, are attracting attention in various real-world applications as manipulators, biomedical devices and wearable tools. As these technologies advance, the ability to perform complex tasks in a robust and reliable way becomes essential. Thus, the incorporation of embedded intelligence in soft robots, which enables them to perceive external environments and generate appropriate actions, is increasingly important. Inspiration from sophisticated biological systems, which exhibit optimized behaviours through the acquisition of external information, promotes the development of intelligent soft robots. Here, we introduce biomimicry strategies for intelligent soft robotics and highlight progress in how soft robots interact with their environment and perform tasks. First, we discuss sensors inspired by the sensory nervous systems and soft actuators inspired by the musculoskeletal systems. Furthermore, we investigate various applications such as manipulation, exploration, wearable devices, biomedical devices and imperceptible devices. We conclude discussing the challenges and offering a perspective on the future direction of this field. Soft robots are evolving to perform increasingly complex tasks, with biomimicry having a fundamental role in their development. This Review details biomimetic strategies and pivotal advances in sensors, actuators and applications of intelligent soft robotics.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges of graph neural networks in electrical engineering 图神经网络在电气工程中的机遇与挑战
Nature Reviews Electrical Engineering Pub Date : 2024-08-05 DOI: 10.1038/s44287-024-00076-z
Eli Chien, Mufei Li, Anthony Aportela, Kerr Ding, Shuyi Jia, Supriyo Maji, Zhongyuan Zhao, Javier Duarte, Victor Fung, Cong Hao, Yunan Luo, Olgica Milenkovic, David Pan, Santiago Segarra, Pan Li
{"title":"Opportunities and challenges of graph neural networks in electrical engineering","authors":"Eli Chien, Mufei Li, Anthony Aportela, Kerr Ding, Shuyi Jia, Supriyo Maji, Zhongyuan Zhao, Javier Duarte, Victor Fung, Cong Hao, Yunan Luo, Olgica Milenkovic, David Pan, Santiago Segarra, Pan Li","doi":"10.1038/s44287-024-00076-z","DOIUrl":"10.1038/s44287-024-00076-z","url":null,"abstract":"Graph neural networks (GNNs) are a class of deep learning algorithms that learn from graphs, networks and relational data. They have found applications throughout the sciences and made significant strides in electrical engineering. GNNs can learn from various electrical and electronic systems, such as electronic circuits, wireless networks and power systems, and assist in solving optimization or inference tasks where traditional approaches may be slow or inaccurate. Robust learning algorithms and efficient computational hardware developed and tailored for GNNs have amplified their relevance to electrical engineering. We have entered an era in which the studies of GNNs and electrical engineering are intertwined, opening to opportunities and challenges to researchers in both fields. This Review explores applications of GNNs that might generate notable impacts on electrical engineering. We discuss how GNNs are used to address electrical automatic design, as well as the modelling and management of wireless communication networks. Additionally, we delve into GNNs for high-energy physics, materials science and biology. Presenting the applications, data and computational challenges, the need for innovative algorithms and hardware solutions becomes clear. Graph neural networks (GNNs) are an important technology for electrical engineering, physics, materials science and biology. This Review discusses how GNNs can help these research fields and how electrical engineering can resolve the technical challenges of GNNs.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信