W.-Y. Woon, A. Kasperovich, J.-R. Wen, K. K. Hu, M. Malakoutian, J.-H. Jhang, S. Vaziri, I. Datye, C. C. Shih, J. F. Hsu, X. Y. Bao, Y. Wu, M. Nomura, S. Chowdhury, S. Sandy Liao
{"title":"用于3d堆叠集成电路的热管理材料","authors":"W.-Y. Woon, A. Kasperovich, J.-R. Wen, K. K. Hu, M. Malakoutian, J.-H. Jhang, S. Vaziri, I. Datye, C. C. Shih, J. F. Hsu, X. Y. Bao, Y. Wu, M. Nomura, S. Chowdhury, S. Sandy Liao","doi":"10.1038/s44287-025-00196-0","DOIUrl":null,"url":null,"abstract":"As transistor scaling approaches nanometre and even atomic scales, 3D stacking has become a critical enabler for advancement in the semiconductor industry, especially in high-performance computing and artificial intelligence (AI) applications. However, 3D integration introduces substantial thermal management challenges related to the increased power density and constrained heat dissipation pathways, particularly through low thermal conductivity interlayer dielectrics and complex interfaces. In this Review, we discuss state-of-the-art thermal management materials, covering their process compatibility, the critical integration challenges and the need for improved methods to enhance heat transport across interfaces. Advanced thermal characterization metrologies are introduced to highlight the need for non-destructive in-line metrologies. Finally, we provide a road map that outlines future research directions for material growth, integration and characterization methodologies to enable viable thermal solutions for 3D integration and beyond. The shrinking dimensions, the increased structural complexity and the 3D stacking of silicon-based semiconductor devices are intensifying challenges in thermal dissipation. This Review explores thermal management materials, integration challenges and characterization methods, and proposes a road map for efficient heat dissipation solutions in 3D integration.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 9","pages":"598-613"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal management materials for 3D-stacked integrated circuits\",\"authors\":\"W.-Y. Woon, A. Kasperovich, J.-R. Wen, K. K. Hu, M. Malakoutian, J.-H. Jhang, S. Vaziri, I. Datye, C. C. Shih, J. F. Hsu, X. Y. Bao, Y. Wu, M. Nomura, S. Chowdhury, S. Sandy Liao\",\"doi\":\"10.1038/s44287-025-00196-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As transistor scaling approaches nanometre and even atomic scales, 3D stacking has become a critical enabler for advancement in the semiconductor industry, especially in high-performance computing and artificial intelligence (AI) applications. However, 3D integration introduces substantial thermal management challenges related to the increased power density and constrained heat dissipation pathways, particularly through low thermal conductivity interlayer dielectrics and complex interfaces. In this Review, we discuss state-of-the-art thermal management materials, covering their process compatibility, the critical integration challenges and the need for improved methods to enhance heat transport across interfaces. Advanced thermal characterization metrologies are introduced to highlight the need for non-destructive in-line metrologies. Finally, we provide a road map that outlines future research directions for material growth, integration and characterization methodologies to enable viable thermal solutions for 3D integration and beyond. The shrinking dimensions, the increased structural complexity and the 3D stacking of silicon-based semiconductor devices are intensifying challenges in thermal dissipation. This Review explores thermal management materials, integration challenges and characterization methods, and proposes a road map for efficient heat dissipation solutions in 3D integration.\",\"PeriodicalId\":501701,\"journal\":{\"name\":\"Nature Reviews Electrical Engineering\",\"volume\":\"2 9\",\"pages\":\"598-613\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44287-025-00196-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-025-00196-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal management materials for 3D-stacked integrated circuits
As transistor scaling approaches nanometre and even atomic scales, 3D stacking has become a critical enabler for advancement in the semiconductor industry, especially in high-performance computing and artificial intelligence (AI) applications. However, 3D integration introduces substantial thermal management challenges related to the increased power density and constrained heat dissipation pathways, particularly through low thermal conductivity interlayer dielectrics and complex interfaces. In this Review, we discuss state-of-the-art thermal management materials, covering their process compatibility, the critical integration challenges and the need for improved methods to enhance heat transport across interfaces. Advanced thermal characterization metrologies are introduced to highlight the need for non-destructive in-line metrologies. Finally, we provide a road map that outlines future research directions for material growth, integration and characterization methodologies to enable viable thermal solutions for 3D integration and beyond. The shrinking dimensions, the increased structural complexity and the 3D stacking of silicon-based semiconductor devices are intensifying challenges in thermal dissipation. This Review explores thermal management materials, integration challenges and characterization methods, and proposes a road map for efficient heat dissipation solutions in 3D integration.