The Ramanujan Journal最新文献

筛选
英文 中文
Absolute convergence of Mellin transforms 梅林变换的绝对收敛性
The Ramanujan Journal Pub Date : 2024-08-29 DOI: 10.1007/s11139-024-00943-1
Othman Tyr
{"title":"Absolute convergence of Mellin transforms","authors":"Othman Tyr","doi":"10.1007/s11139-024-00943-1","DOIUrl":"https://doi.org/10.1007/s11139-024-00943-1","url":null,"abstract":"<p>The problem of the integrability of Mellin transforms is presented. Sufficient Lipschitz conditions are given to solve this problem. These results are inspired by well-known works of Titchmarsh in classical Fourier harmonic analysis. Some results on the integrability of Mellin transforms of the Mellin convolutions are also given.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analogue of Kida’s formula for elliptic curves with additive reduction 基达公式在椭圆曲线上的类比与加法还原
The Ramanujan Journal Pub Date : 2024-08-27 DOI: 10.1007/s11139-024-00920-8
Anwesh Ray, Pratiksha Shingavekar
{"title":"An analogue of Kida’s formula for elliptic curves with additive reduction","authors":"Anwesh Ray, Pratiksha Shingavekar","doi":"10.1007/s11139-024-00920-8","DOIUrl":"https://doi.org/10.1007/s11139-024-00920-8","url":null,"abstract":"<p>We study the Iwasawa theory of <i>p</i>-primary Selmer groups of elliptic curves <i>E</i> over a number field <i>K</i>. Assume that <i>E</i> has additive reduction at the primes of <i>K</i> above <i>p</i>. In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of <span>(mathbb {Q})</span>. These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irrationality exponents of certain alternating series 某些交替数列的非理性指数
The Ramanujan Journal Pub Date : 2024-08-26 DOI: 10.1007/s11139-024-00923-5
Iekata Shiokawa
{"title":"Irrationality exponents of certain alternating series","authors":"Iekata Shiokawa","doi":"10.1007/s11139-024-00923-5","DOIUrl":"https://doi.org/10.1007/s11139-024-00923-5","url":null,"abstract":"<p>Let <i>m</i> be a positive integer, <span>((w_n))</span> be a sequence of positive integers, and <span>((y_n))</span> be a sequence of nonzero integers with <span>(y_1ge 1)</span>. Define <span>(q_0=1, q_1=w_0, q_{n+1}=q_{n-1}(w_nq_n^m+y_n) ,,(nge 1))</span>. Under certain assumptions on <span>((w_n))</span> and <span>((y_n))</span>, we give the exact value of the irrationality exponent of the number </p><span>$$begin{aligned} xi =sum _{n=1}^{infty }(-1)^{n-1}frac{y_1y_2cdots y_n}{q_nq_{n-1}}. end{aligned}$$</span>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"107 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unimodality of regular partition polynomials 正则分割多项式的单模态性
The Ramanujan Journal Pub Date : 2024-08-24 DOI: 10.1007/s11139-024-00925-3
Xin-Chun Zhan, Bao-Xuan Zhu
{"title":"Unimodality of regular partition polynomials","authors":"Xin-Chun Zhan, Bao-Xuan Zhu","doi":"10.1007/s11139-024-00925-3","DOIUrl":"https://doi.org/10.1007/s11139-024-00925-3","url":null,"abstract":"<p>Let <i>n</i>, <i>p</i> and <i>j</i> be integers. Define </p><span>$$begin{aligned} R_{n,p,j}(q):=prod _{k=0}^{n}(1+q^{pk+1})(1+q^{pk+2})cdots (1+q^{pk+j}). end{aligned}$$</span><p>The coefficients of the polynomial <span>(R_{n,p,j}(q))</span> count certain regular partition. Recently, Dong and Ji studied unimodality of the polynomials <span>(R_{n,p,p-1}(q))</span>. As an extension, in this paper, we give a criterion for unimodality of the polynomials <span>( R_{n,p,j}(q))</span> for <span>(p ge 6)</span> and <span>(lceil frac{p+1}{2}rceil le jle p-1.)</span> In particular, using our criterion and Mathematica, we obtain that <span>(R_{n,p,j}(q))</span> is unimodal for <span>(nge 3)</span> if <span>(6le p le 15)</span> and <span>(lceil frac{p+1}{2}rceil le jle p-1.)</span></p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"117 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New congruences on partition diamonds with $$n+1$$ copies of n n+1$$ 份的分割钻石上的新全等式
The Ramanujan Journal Pub Date : 2024-08-23 DOI: 10.1007/s11139-024-00934-2
Yongqiang Chen, Eric H. Liu, Olivia X. M. Yao
{"title":"New congruences on partition diamonds with $$n+1$$ copies of n","authors":"Yongqiang Chen, Eric H. Liu, Olivia X. M. Yao","doi":"10.1007/s11139-024-00934-2","DOIUrl":"https://doi.org/10.1007/s11139-024-00934-2","url":null,"abstract":"<p>Recently, Andrews and Paule introduced a partition function <i>PDN</i>1(<i>N</i>) which counts the number of partition diamonds with <span>(n+1)</span> copies of <i>n</i> where summing the parts at the links gives <i>N</i>. They also established the generating function of <i>PDN</i>1(<i>n</i>) and proved congruences modulo 5,7,25,49 for <i>PDN</i>1(<i>n</i>). At the end of their paper, Andrews and Paule asked for the existence of other types of congruence relations for <i>PDN</i>1(<i>n</i>). Motivated by their work, we prove some new congruences modulo 125 and 625 for <i>PDN</i>1(<i>n</i>) by using some identities due to Chern and Tang. In particular, we discover a family of strange congruences modulo 625 for <i>PDN</i>1(<i>n</i>). For example, we prove that for <span>(kge 0)</span>, </p><span>$$begin{aligned} PDN1left( 5^7 cdot 7^{8k}+frac{ 19cdot 5^7cdot 7^{8k}+1 }{24} right) equiv 5^3 pmod {5^4}. end{aligned}$$</span>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"155 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On p-divisibility of Fourier coefficients of Hermitian modular forms 论赫米特模形式傅里叶系数的 p 可分性
The Ramanujan Journal Pub Date : 2024-08-23 DOI: 10.1007/s11139-024-00924-4
Shoyu Nagaoka
{"title":"On p-divisibility of Fourier coefficients of Hermitian modular forms","authors":"Shoyu Nagaoka","doi":"10.1007/s11139-024-00924-4","DOIUrl":"https://doi.org/10.1007/s11139-024-00924-4","url":null,"abstract":"<p>We describe the <i>p</i>-divisibility transposition for the Fourier coefficients of Hermitian modular forms. The results show that the same phenomenon as that for Siegel modular forms holds for Hermitian modular forms</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke-type double sums and the Bailey transform 赫克型双和与贝利变换
The Ramanujan Journal Pub Date : 2024-08-22 DOI: 10.1007/s11139-024-00926-2
Su-Ping Cui, Hai-Xing Du, Nancy S. S. Gu, Liuquan Wang
{"title":"Hecke-type double sums and the Bailey transform","authors":"Su-Ping Cui, Hai-Xing Du, Nancy S. S. Gu, Liuquan Wang","doi":"10.1007/s11139-024-00926-2","DOIUrl":"https://doi.org/10.1007/s11139-024-00926-2","url":null,"abstract":"<p>Hecke-type double sums play a crucial role in proving many identities related to mock theta functions given by Ramanujan. In the literature, the Bailey pair machinery is an efficient tool to derive Hecke-type double sums for mock theta functions. In this paper, by using some Bailey pairs and conjugate Bailey pairs, and then applying the Bailey transform, we establish some trivariate identities which imply the Hecke-type double sums for some classical mock theta functions of orders 3, 6, and 10. Meanwhile, we generalize a bivariate Hecke-type identity due to Garvan.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A further look at the overpartition function modulo $$2^4$$ and $$2^5$$ 进一步了解模数$2^4$$和$2^5$$的过分割函数
The Ramanujan Journal Pub Date : 2024-08-20 DOI: 10.1007/s11139-024-00933-3
Ranganatha Dasappa, Gedela Kavya Keerthana
{"title":"A further look at the overpartition function modulo $$2^4$$ and $$2^5$$","authors":"Ranganatha Dasappa, Gedela Kavya Keerthana","doi":"10.1007/s11139-024-00933-3","DOIUrl":"https://doi.org/10.1007/s11139-024-00933-3","url":null,"abstract":"<p>In this paper, we describe a systematic way of obtaining the exact generating functions for <span>(overline{p}(2n))</span>, <span>(overline{p}(4n))</span> (first proved by Fortin et al.), <span>(overline{p}(8n))</span>, <span>(overline{p}(16n))</span>, etc. where <span>(overline{p}(n))</span> denotes the number of overpartitions of <i>n</i>. We further establish several new infinite families of congruences modulo <span>(2^4)</span> and <span>(2^5)</span> for <span>(overline{p}(n))</span>. For example, we prove that for all <span>(n, alpha , beta ge 0)</span> and primes <span>(pge 5)</span>, </p><span>$$begin{aligned} overline{p}left( 3^{4alpha +1}p^{2beta +1}left( 24pn+24j+7pright) right)&amp;equiv 0pmod {2^5} end{aligned}$$</span><p>and </p><span>$$begin{aligned} overline{p}left( 3^{2alpha +1}(24n+23)right)&amp;equiv 0pmod {2^5}, end{aligned}$$</span><p>where <span>(bigl (frac{-6}{p}bigr )=-1)</span> and <span>(1le jle p-1)</span>. The last congruence was proved by Xiong (Int J Number Theory 12:1195–1208, 2016) for modulo <span>(2^4)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palindrome partitions and the Calkin–Wilf tree Palindrome 分区和 Calkin-Wilf 树
The Ramanujan Journal Pub Date : 2024-08-20 DOI: 10.1007/s11139-024-00927-1
David J. Hemmer, Karlee J. Westrem
{"title":"Palindrome partitions and the Calkin–Wilf tree","authors":"David J. Hemmer, Karlee J. Westrem","doi":"10.1007/s11139-024-00927-1","DOIUrl":"https://doi.org/10.1007/s11139-024-00927-1","url":null,"abstract":"<p>There is a well-known bijection between finite binary sequences and integer partitions. Sequences of length <i>r</i> correspond to partitions of perimeter <span>(r+1)</span>. Motivated by work on rational numbers in the Calkin–Wilf tree, we classify partitions whose corresponding binary sequence is a palindrome. We give a generating function that counts these partitions, and describe how to efficiently generate all of them. Atypically for partition generating functions, we find an unusual significance to prime degrees. Specifically, we prove there are nontrivial <i>palindrome partitions</i> of <i>n</i> except when <span>(n=3)</span> or <span>(n+1)</span> is prime. We find an interesting new “branching diagram” for partitions, similar to Young’s lattice, with an action of the Klein four group corresponding to natural operations on the binary sequences.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An unsolved question surrounding the Generalized Laguerre Polynomial $$L_{n}^{(n)}(x)$$ 围绕广义拉盖尔多项式 $$L_{n}^{(n)}(x)$$ 的未解之谜
The Ramanujan Journal Pub Date : 2024-08-20 DOI: 10.1007/s11139-024-00932-4
Pradipto Banerjee
{"title":"An unsolved question surrounding the Generalized Laguerre Polynomial $$L_{n}^{(n)}(x)$$","authors":"Pradipto Banerjee","doi":"10.1007/s11139-024-00932-4","DOIUrl":"https://doi.org/10.1007/s11139-024-00932-4","url":null,"abstract":"<p>We examine the family of generalized Laguerre polynomials <span>(L_{n}^{(n)}(x))</span>. In 1989, Gow discovered that if <i>n</i> is even, then the discriminant of <span>(L_{n}^{(n)}(x))</span> is a nonzero square of a rational number. Additionally, in the case where the polynomial <span>(L_{n}^{(n)}(x))</span> is irreducible over the rationals, the associated Galois group is the alternating group <span>(A_{n})</span>. Filaseta et al. (2012) established the irreducibility of <span>(L_{n}^{(n)}(x))</span> for every <span>(n&gt;2)</span> satisfying <span>(2pmod {4})</span>. They also demonstrated that if <i>n</i> is <span>(0pmod {4})</span>, then <span>(L_{n}^{(n)}(x))</span> has a linear factor if it is not irreducible. The question of whether <span>(L_{n}^{(n)}(x))</span> has a linear factor when <i>n</i> is <span>(0pmod {4})</span> remained unanswered. We resolve this question by proving that <span>(L_{n}^{(n)}(x))</span> does not have a linear factor for sufficiently large <i>n</i>. This conclusion completes the classification of generalized Laguerre polynomials having Galois group the alternating group, excluding a finite set of exceptions.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信