Irrationality exponents of certain alternating series

Iekata Shiokawa
{"title":"Irrationality exponents of certain alternating series","authors":"Iekata Shiokawa","doi":"10.1007/s11139-024-00923-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>m</i> be a positive integer, <span>\\((w_n)\\)</span> be a sequence of positive integers, and <span>\\((y_n)\\)</span> be a sequence of nonzero integers with <span>\\(y_1\\ge 1\\)</span>. Define <span>\\(q_0=1, q_1=w_0, q_{n+1}=q_{n-1}(w_nq_n^m+y_n) \\,\\,(n\\ge 1)\\)</span>. Under certain assumptions on <span>\\((w_n)\\)</span> and <span>\\((y_n)\\)</span>, we give the exact value of the irrationality exponent of the number </p><span>$$\\begin{aligned} \\xi =\\sum _{n=1}^{\\infty }(-1)^{n-1}\\frac{y_1y_2\\cdots y_n}{q_nq_{n-1}}. \\end{aligned}$$</span>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00923-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let m be a positive integer, \((w_n)\) be a sequence of positive integers, and \((y_n)\) be a sequence of nonzero integers with \(y_1\ge 1\). Define \(q_0=1, q_1=w_0, q_{n+1}=q_{n-1}(w_nq_n^m+y_n) \,\,(n\ge 1)\). Under certain assumptions on \((w_n)\) and \((y_n)\), we give the exact value of the irrationality exponent of the number

$$\begin{aligned} \xi =\sum _{n=1}^{\infty }(-1)^{n-1}\frac{y_1y_2\cdots y_n}{q_nq_{n-1}}. \end{aligned}$$
某些交替数列的非理性指数
设 m 是一个正整数,\((w_n)\)是一个正整数序列,\((y_n)\)是一个非零整数序列,且\(y_1ge 1\).定义 \(q_0=1, q_1=w_0, q_{n+1}=q_{n-1}(w_nq_n^m+y_n) \,\,(n\ge 1)\)。在对\((w_n)\)和\((y_n)\)有一定假设的情况下,我们给出了$$\begin{aligned}这个数的非理性指数的精确值。\Xi =sum _{n=1}^{infty }(-1)^{n-1}frac{y_1y_2\cdots y_n}{q_nq_{n-1}}.\end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信