进一步了解模数$2^4$$和$2^5$$的过分割函数

Ranganatha Dasappa, Gedela Kavya Keerthana
{"title":"进一步了解模数$2^4$$和$2^5$$的过分割函数","authors":"Ranganatha Dasappa, Gedela Kavya Keerthana","doi":"10.1007/s11139-024-00933-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we describe a systematic way of obtaining the exact generating functions for <span>\\(\\overline{p}(2n)\\)</span>, <span>\\(\\overline{p}(4n)\\)</span> (first proved by Fortin et al.), <span>\\(\\overline{p}(8n)\\)</span>, <span>\\(\\overline{p}(16n)\\)</span>, etc. where <span>\\(\\overline{p}(n)\\)</span> denotes the number of overpartitions of <i>n</i>. We further establish several new infinite families of congruences modulo <span>\\(2^4\\)</span> and <span>\\(2^5\\)</span> for <span>\\(\\overline{p}(n)\\)</span>. For example, we prove that for all <span>\\(n, \\alpha , \\beta \\ge 0\\)</span> and primes <span>\\(p\\ge 5\\)</span>, </p><span>$$\\begin{aligned} \\overline{p}\\left( 3^{4\\alpha +1}p^{2\\beta +1}\\left( 24pn+24j+7p\\right) \\right)&amp;\\equiv 0\\pmod {2^5} \\end{aligned}$$</span><p>and </p><span>$$\\begin{aligned} \\overline{p}\\left( 3^{2\\alpha +1}(24n+23)\\right)&amp;\\equiv 0\\pmod {2^5}, \\end{aligned}$$</span><p>where <span>\\(\\bigl (\\frac{-6}{p}\\bigr )=-1\\)</span> and <span>\\(1\\le j\\le p-1\\)</span>. The last congruence was proved by Xiong (Int J Number Theory 12:1195–1208, 2016) for modulo <span>\\(2^4\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A further look at the overpartition function modulo $$2^4$$ and $$2^5$$\",\"authors\":\"Ranganatha Dasappa, Gedela Kavya Keerthana\",\"doi\":\"10.1007/s11139-024-00933-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we describe a systematic way of obtaining the exact generating functions for <span>\\\\(\\\\overline{p}(2n)\\\\)</span>, <span>\\\\(\\\\overline{p}(4n)\\\\)</span> (first proved by Fortin et al.), <span>\\\\(\\\\overline{p}(8n)\\\\)</span>, <span>\\\\(\\\\overline{p}(16n)\\\\)</span>, etc. where <span>\\\\(\\\\overline{p}(n)\\\\)</span> denotes the number of overpartitions of <i>n</i>. We further establish several new infinite families of congruences modulo <span>\\\\(2^4\\\\)</span> and <span>\\\\(2^5\\\\)</span> for <span>\\\\(\\\\overline{p}(n)\\\\)</span>. For example, we prove that for all <span>\\\\(n, \\\\alpha , \\\\beta \\\\ge 0\\\\)</span> and primes <span>\\\\(p\\\\ge 5\\\\)</span>, </p><span>$$\\\\begin{aligned} \\\\overline{p}\\\\left( 3^{4\\\\alpha +1}p^{2\\\\beta +1}\\\\left( 24pn+24j+7p\\\\right) \\\\right)&amp;\\\\equiv 0\\\\pmod {2^5} \\\\end{aligned}$$</span><p>and </p><span>$$\\\\begin{aligned} \\\\overline{p}\\\\left( 3^{2\\\\alpha +1}(24n+23)\\\\right)&amp;\\\\equiv 0\\\\pmod {2^5}, \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\bigl (\\\\frac{-6}{p}\\\\bigr )=-1\\\\)</span> and <span>\\\\(1\\\\le j\\\\le p-1\\\\)</span>. The last congruence was proved by Xiong (Int J Number Theory 12:1195–1208, 2016) for modulo <span>\\\\(2^4\\\\)</span>.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00933-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00933-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了一种获得 \(\overline{p}(2n)\), \(\overline{p}(4n)\) (首先由 Fortin 等人证明), \(\overline{p}(8n)\), \(\overline{p}(16n)\) 等精确生成函数的系统方法,其中 \(\overline{p}(n)\) 表示 n 的过分区数。对于 \(\overline{p}(n)\), 我们进一步建立了几个新的无穷同余族 modulo\(2^4\) and\(2^5\) 。例如,我们证明对于所有的 \(n, \alpha , \beta \ge 0\) 和素数 \(p\ge 5\), $$\begin{aligned}.\overline{p}\left( 3^{4\alpha +1}p^{2\beta +1}\left( 24pn+24j+7p\right)\right)&\equiv 0\pmod {2^5}\end{aligned}$$and $$\begin{aligned}\overline{p}left(3^{2α+1}(24n+23)\right)&(equiv 0\pmod {2^5},(end{aligned})$$其中(\bigl (\frac{-6}{p}\bigr )=-1\) 和(1\le j\le p-1)。最后一个同余由 Xiong 证明(Int J Number Theory 12:1195-1208, 2016),适用于 modulo (2^4\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A further look at the overpartition function modulo $$2^4$$ and $$2^5$$

In this paper, we describe a systematic way of obtaining the exact generating functions for \(\overline{p}(2n)\), \(\overline{p}(4n)\) (first proved by Fortin et al.), \(\overline{p}(8n)\), \(\overline{p}(16n)\), etc. where \(\overline{p}(n)\) denotes the number of overpartitions of n. We further establish several new infinite families of congruences modulo \(2^4\) and \(2^5\) for \(\overline{p}(n)\). For example, we prove that for all \(n, \alpha , \beta \ge 0\) and primes \(p\ge 5\),

$$\begin{aligned} \overline{p}\left( 3^{4\alpha +1}p^{2\beta +1}\left( 24pn+24j+7p\right) \right)&\equiv 0\pmod {2^5} \end{aligned}$$

and

$$\begin{aligned} \overline{p}\left( 3^{2\alpha +1}(24n+23)\right)&\equiv 0\pmod {2^5}, \end{aligned}$$

where \(\bigl (\frac{-6}{p}\bigr )=-1\) and \(1\le j\le p-1\). The last congruence was proved by Xiong (Int J Number Theory 12:1195–1208, 2016) for modulo \(2^4\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信