An unsolved question surrounding the Generalized Laguerre Polynomial $$L_{n}^{(n)}(x)$$

Pradipto Banerjee
{"title":"An unsolved question surrounding the Generalized Laguerre Polynomial $$L_{n}^{(n)}(x)$$","authors":"Pradipto Banerjee","doi":"10.1007/s11139-024-00932-4","DOIUrl":null,"url":null,"abstract":"<p>We examine the family of generalized Laguerre polynomials <span>\\(L_{n}^{(n)}(x)\\)</span>. In 1989, Gow discovered that if <i>n</i> is even, then the discriminant of <span>\\(L_{n}^{(n)}(x)\\)</span> is a nonzero square of a rational number. Additionally, in the case where the polynomial <span>\\(L_{n}^{(n)}(x)\\)</span> is irreducible over the rationals, the associated Galois group is the alternating group <span>\\(A_{n}\\)</span>. Filaseta et al. (2012) established the irreducibility of <span>\\(L_{n}^{(n)}(x)\\)</span> for every <span>\\(n&gt;2\\)</span> satisfying <span>\\(2\\pmod {4}\\)</span>. They also demonstrated that if <i>n</i> is <span>\\(0\\pmod {4}\\)</span>, then <span>\\(L_{n}^{(n)}(x)\\)</span> has a linear factor if it is not irreducible. The question of whether <span>\\(L_{n}^{(n)}(x)\\)</span> has a linear factor when <i>n</i> is <span>\\(0\\pmod {4}\\)</span> remained unanswered. We resolve this question by proving that <span>\\(L_{n}^{(n)}(x)\\)</span> does not have a linear factor for sufficiently large <i>n</i>. This conclusion completes the classification of generalized Laguerre polynomials having Galois group the alternating group, excluding a finite set of exceptions.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00932-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the family of generalized Laguerre polynomials \(L_{n}^{(n)}(x)\). In 1989, Gow discovered that if n is even, then the discriminant of \(L_{n}^{(n)}(x)\) is a nonzero square of a rational number. Additionally, in the case where the polynomial \(L_{n}^{(n)}(x)\) is irreducible over the rationals, the associated Galois group is the alternating group \(A_{n}\). Filaseta et al. (2012) established the irreducibility of \(L_{n}^{(n)}(x)\) for every \(n>2\) satisfying \(2\pmod {4}\). They also demonstrated that if n is \(0\pmod {4}\), then \(L_{n}^{(n)}(x)\) has a linear factor if it is not irreducible. The question of whether \(L_{n}^{(n)}(x)\) has a linear factor when n is \(0\pmod {4}\) remained unanswered. We resolve this question by proving that \(L_{n}^{(n)}(x)\) does not have a linear factor for sufficiently large n. This conclusion completes the classification of generalized Laguerre polynomials having Galois group the alternating group, excluding a finite set of exceptions.

围绕广义拉盖尔多项式 $$L_{n}^{(n)}(x)$$ 的未解之谜
我们研究了广义拉盖尔多项式族 \(L_{n}^{(n)}(x)\)。1989 年,高(Gow)发现,如果 n 是偶数,那么 \(L_{n}^{(n)}(x)\) 的判别式就是一个有理数的非零平方。此外,在多项式 \(L_{n}^{(n)}(x)\ 是在有理数上不可还原的情况下,相关的伽罗瓦群是交替群 \(A_{n}\)。Filaseta 等人(2012)为满足 \(2\pmod {4}\) 的每一个 \(n>2\) 建立了 \(L_{n}^{(n)}(x)\) 的不可还原性。他们还证明,如果 n 是 \(0\pmod {4}\),那么 \(L_{n}^{(n)}(x)\) 如果不是不可还原的,就有一个线性因子。当 n 为 (0\pmod {4}\)时,\(L_{n}^{(n)}(x)\) 是否有线性因子的问题仍然没有答案。我们通过证明 \(L_{n}^{(n)}(x)\)在足够大的 n 时不具有线性因子来解决这个问题。这个结论完成了具有伽罗瓦群交替群的广义拉盖尔多项式的分类,排除了有限的一组例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信