Palindrome 分区和 Calkin-Wilf 树

David J. Hemmer, Karlee J. Westrem
{"title":"Palindrome 分区和 Calkin-Wilf 树","authors":"David J. Hemmer, Karlee J. Westrem","doi":"10.1007/s11139-024-00927-1","DOIUrl":null,"url":null,"abstract":"<p>There is a well-known bijection between finite binary sequences and integer partitions. Sequences of length <i>r</i> correspond to partitions of perimeter <span>\\(r+1\\)</span>. Motivated by work on rational numbers in the Calkin–Wilf tree, we classify partitions whose corresponding binary sequence is a palindrome. We give a generating function that counts these partitions, and describe how to efficiently generate all of them. Atypically for partition generating functions, we find an unusual significance to prime degrees. Specifically, we prove there are nontrivial <i>palindrome partitions</i> of <i>n</i> except when <span>\\(n=3\\)</span> or <span>\\(n+1\\)</span> is prime. We find an interesting new “branching diagram” for partitions, similar to Young’s lattice, with an action of the Klein four group corresponding to natural operations on the binary sequences.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palindrome partitions and the Calkin–Wilf tree\",\"authors\":\"David J. Hemmer, Karlee J. Westrem\",\"doi\":\"10.1007/s11139-024-00927-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a well-known bijection between finite binary sequences and integer partitions. Sequences of length <i>r</i> correspond to partitions of perimeter <span>\\\\(r+1\\\\)</span>. Motivated by work on rational numbers in the Calkin–Wilf tree, we classify partitions whose corresponding binary sequence is a palindrome. We give a generating function that counts these partitions, and describe how to efficiently generate all of them. Atypically for partition generating functions, we find an unusual significance to prime degrees. Specifically, we prove there are nontrivial <i>palindrome partitions</i> of <i>n</i> except when <span>\\\\(n=3\\\\)</span> or <span>\\\\(n+1\\\\)</span> is prime. We find an interesting new “branching diagram” for partitions, similar to Young’s lattice, with an action of the Klein four group corresponding to natural operations on the binary sequences.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00927-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00927-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限二进制序列和整数分区之间有一个众所周知的双射关系。长度为 r 的序列对应于周长为 \(r+1\) 的分区。受 Calkin-Wilf 树中有理数研究的启发,我们对对应二进制序列是回文的分区进行了分类。我们给出了计算这些分区的生成函数,并描述了如何高效地生成所有分区。对于分区生成函数来说,我们发现素数具有不同寻常的意义。具体地说,我们证明了除了 \(n=3\) 或 \(n+1\) 是质数时,n 存在着非难的回文分区。我们为分区找到了一个有趣的新 "分支图",它类似于杨格,克莱因四群的作用与二进制序列上的自然操作相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Palindrome partitions and the Calkin–Wilf tree

Palindrome partitions and the Calkin–Wilf tree

There is a well-known bijection between finite binary sequences and integer partitions. Sequences of length r correspond to partitions of perimeter \(r+1\). Motivated by work on rational numbers in the Calkin–Wilf tree, we classify partitions whose corresponding binary sequence is a palindrome. We give a generating function that counts these partitions, and describe how to efficiently generate all of them. Atypically for partition generating functions, we find an unusual significance to prime degrees. Specifically, we prove there are nontrivial palindrome partitions of n except when \(n=3\) or \(n+1\) is prime. We find an interesting new “branching diagram” for partitions, similar to Young’s lattice, with an action of the Klein four group corresponding to natural operations on the binary sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信