An analogue of Kida’s formula for elliptic curves with additive reduction

Anwesh Ray, Pratiksha Shingavekar
{"title":"An analogue of Kida’s formula for elliptic curves with additive reduction","authors":"Anwesh Ray, Pratiksha Shingavekar","doi":"10.1007/s11139-024-00920-8","DOIUrl":null,"url":null,"abstract":"<p>We study the Iwasawa theory of <i>p</i>-primary Selmer groups of elliptic curves <i>E</i> over a number field <i>K</i>. Assume that <i>E</i> has additive reduction at the primes of <i>K</i> above <i>p</i>. In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of <span>\\(\\mathbb {Q}\\)</span>. These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00920-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Iwasawa theory of p-primary Selmer groups of elliptic curves E over a number field K. Assume that E has additive reduction at the primes of K above p. In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann–Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of \(\mathbb {Q}\). These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.

Abstract Image

基达公式在椭圆曲线上的类比与加法还原
我们研究了数域 K 上椭圆曲线 E 的 p 初塞尔默群的岩泽理论。假设 E 在 K 的素数 p 以上有加法还原。这概括了八森(Hachimori)和松野(Matsuno)的一个结果。我们应用我们的结果来研究椭圆曲线在 \(\mathbb {Q}\) 的素循环扩展中的秩稳定性问题。我们证明了岩泽不变式以及椭圆曲线秩稳定的扩展密度的渐近下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信