梅林变换的绝对收敛性

Othman Tyr
{"title":"梅林变换的绝对收敛性","authors":"Othman Tyr","doi":"10.1007/s11139-024-00943-1","DOIUrl":null,"url":null,"abstract":"<p>The problem of the integrability of Mellin transforms is presented. Sufficient Lipschitz conditions are given to solve this problem. These results are inspired by well-known works of Titchmarsh in classical Fourier harmonic analysis. Some results on the integrability of Mellin transforms of the Mellin convolutions are also given.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute convergence of Mellin transforms\",\"authors\":\"Othman Tyr\",\"doi\":\"10.1007/s11139-024-00943-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of the integrability of Mellin transforms is presented. Sufficient Lipschitz conditions are given to solve this problem. These results are inspired by well-known works of Titchmarsh in classical Fourier harmonic analysis. Some results on the integrability of Mellin transforms of the Mellin convolutions are also given.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00943-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00943-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了梅林变换的可整性问题。给出了解决这一问题的充分的 Lipschitz 条件。这些结果受到 Titchmarsh 在经典傅立叶谐波分析中的著名研究成果的启发。此外,还给出了关于梅林卷积的梅林变换的可整性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute convergence of Mellin transforms

The problem of the integrability of Mellin transforms is presented. Sufficient Lipschitz conditions are given to solve this problem. These results are inspired by well-known works of Titchmarsh in classical Fourier harmonic analysis. Some results on the integrability of Mellin transforms of the Mellin convolutions are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信