赫克型双和与贝利变换

Su-Ping Cui, Hai-Xing Du, Nancy S. S. Gu, Liuquan Wang
{"title":"赫克型双和与贝利变换","authors":"Su-Ping Cui, Hai-Xing Du, Nancy S. S. Gu, Liuquan Wang","doi":"10.1007/s11139-024-00926-2","DOIUrl":null,"url":null,"abstract":"<p>Hecke-type double sums play a crucial role in proving many identities related to mock theta functions given by Ramanujan. In the literature, the Bailey pair machinery is an efficient tool to derive Hecke-type double sums for mock theta functions. In this paper, by using some Bailey pairs and conjugate Bailey pairs, and then applying the Bailey transform, we establish some trivariate identities which imply the Hecke-type double sums for some classical mock theta functions of orders 3, 6, and 10. Meanwhile, we generalize a bivariate Hecke-type identity due to Garvan.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hecke-type double sums and the Bailey transform\",\"authors\":\"Su-Ping Cui, Hai-Xing Du, Nancy S. S. Gu, Liuquan Wang\",\"doi\":\"10.1007/s11139-024-00926-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hecke-type double sums play a crucial role in proving many identities related to mock theta functions given by Ramanujan. In the literature, the Bailey pair machinery is an efficient tool to derive Hecke-type double sums for mock theta functions. In this paper, by using some Bailey pairs and conjugate Bailey pairs, and then applying the Bailey transform, we establish some trivariate identities which imply the Hecke-type double sums for some classical mock theta functions of orders 3, 6, and 10. Meanwhile, we generalize a bivariate Hecke-type identity due to Garvan.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00926-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00926-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在证明拉马努扬给出的许多与模拟 Theta 函数相关的等式时,Hecke 型双和起着至关重要的作用。在文献中,贝利对机制是推导模拟 Theta 函数的 Hecke 型双和的有效工具。在本文中,我们利用一些贝利对和共轭贝利对,然后应用贝利变换,建立了一些三变量等式,这些等式隐含了一些阶数为 3、6 和 10 的经典模拟 Theta 函数的 Hecke 型双和。同时,我们还推广了加尔文提出的一个双变量 Hecke 型特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke-type double sums and the Bailey transform

Hecke-type double sums play a crucial role in proving many identities related to mock theta functions given by Ramanujan. In the literature, the Bailey pair machinery is an efficient tool to derive Hecke-type double sums for mock theta functions. In this paper, by using some Bailey pairs and conjugate Bailey pairs, and then applying the Bailey transform, we establish some trivariate identities which imply the Hecke-type double sums for some classical mock theta functions of orders 3, 6, and 10. Meanwhile, we generalize a bivariate Hecke-type identity due to Garvan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信